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Abstract

This paper investigates Intergenerational Elasticity (IGE) and Rank-Rank coefficients, employing Yitzhaki’s

theorem to express them as weighted averages of underlying causal mechanisms driving mobility. We highlight

the challenges of interpreting cross-country comparisons using IGE or Rank-Rank coefficients due to the regression

weighting scheme. We also show that, while the Rank-Rank coefficient is more interpretable for positional mobility,

it lacks insights into the underlying mechanisms driving mobility across countries. The analysis demonstrates

potential drawbacks of using linear regression coefficients as summary statistics in the context of intergenerational

mobility comparisons.

Introduction

Numerous studies have examined the relationship between parental income and child income. Two prominent methods

for summarizing the joint distribution of these incomes are the Intergenerational Elasticity (IGE) coefficient and the

Rank-Rank coefficient (Mogstad and Torsvik (2023)). This paper explores how these measures summarize the joint

income distribution and their subsequent connections to the underlying mechanisms that link parental and child

income.

Let Ic and Ip denote child and parent income, respectively. The IGE coefficient is the slope coefficient obtained by
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regressing the logarithm of child income on the logarithm of parent income as follows:

log Ic = αIGE + βIGE log Ip + ϵ. (1)

This regression coefficient captures the persistence between child log income and the parent log income, with higher

values indicating stronger persistence.1 A popular alternative to this method is the Rank-Rank regression, which

assesses the correlation between parent and child ranks within their respective income distributions. Assuming a

continuous income distribution for both parents and children, let Rc = Fc(Ic) and Rp = Fp(Ip) represent the parent

and child ranks in their respective income distributions, where Fc(x) and Fp(x) are the cumulative distribution functions

of child and parental income, respectively. Researchers then measure the Rank-Rank relationship by estimating the

following regression:

Rc = αr + βrRp + ε. (2)

The regression slope coefficient quantifies how the child position in the income distribution relates to their parent

position in the corresponding income distribution.

The IGE coefficient has been extensively employed in empirical studies to describe intergenerational persistence,

dating back to the 1980s (Becker and Tomes (1986), Atkinson (1980)). However, the Rank-Rank coefficient has gained

popularity more recently, after Chetty et al. (2014b) applied it to measure social mobility over time in the United States.

While both coefficients are used to describe intergenerational mobility, each conveys distinct information about the joint

distribution of parental and child income. As demonstrated below, the IGE provides a weighted average of the expected

change in child logarithmic income in relation to a change in parent logarithmic income.2 Consequently, the IGE

coefficient is influenced by both the marginal distributions and the dependency structure between parental and child

income. In contrast, the Rank-Rank coefficient measures positional mobility across generations, only summarizing the

copula while isolating the dependency structure between the incomes and disregarding changes in marginal distributions

(Deutscher and Mazumder (2023), Mogstad and Torsvik (2023), Aloni and Krill (2017)). From a practical perspective,

the Rank-Rank coefficient has shown to more robust to sample restrictions (Chetty et al. (2014a), Chetty et al. (2014b),

1In many cases, the level of intergenerational mobility is reported using (1-βIGE)
2Mitnik and Grusky (2020) illustrates that the IGE can be considered as the elasticity of the conditional geometric mean, i.e., the

expected percentage change in the geometric mean of the child’s income with respect to the percentage change in the parental income.
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Dahl and DeLeire (2008)). In some countries (although not all; Bratberg et al. (2017), Acciari et al. (2022)), the

Rank-Rank relation between parental and child income is almost perfectly linear. On the other hand, the conditional

expectation function, E[log Ic| log Ip], demonstrates significant nonlinearity (Chetty et al. (2014a), Deutscher and

Mazumder (2023)). Moreover, the Rank-Rank coefficient allows researchers to include individuals with no income.

This could be important since, as observed by Chetty et al. (2014a), the IGE demonstrates significant sensitivity to

the substitution of zeros with ones or 1, 000s.

This paper examines the challenges that are inherent to using IGE and Rank-Rank coefficients for cross-country

mobility comparisons. We express these coefficients as weighted averages of causal factors affecting intergenerational

mobility using Yitzhaki’s theorem (Yitzhaki (1996)), demonstrating that these coefficients assign varying weights across

the parental income distribution. This helps to explain certain properties that were shown in the existing literature.

We further explore how the parental income distribution influences the IGE and Rank-Rank coefficients, complicating

cross-country comparisons, particularly when mobility occurs in different segments of the parental income distribution

in each country. A related study (Maasoumi et al. (2022)) also employs Yitzhaki’s theorem, framing the IGE coefficient

weighting scheme as a special case within a broader class of intergenerational mobility measures that captures different

preference relations over income distributions. The authors show that the IGE coefficient corresponds to a specific

case of a preference relations that places higher weight on the mobility of wealthier households. In contrast, our study

focuses on interpreting the coefficients as a weighted average of the underlying causal mechanisms and examines how

these interpretations are important for cross-country comparison.

Decomposing the IGE coefficient

We begin by examining the βIGE coefficient. Let us assume that (Ic, Ip) are i.i.d, E[| log Ic|], E[| log Ip|] < ∞, and

E[log Ic| log Ip = t] exists and is differentiable for all t. According to Yitzhaki’s theorem, we can express βIGE as a

weighted average of the derivative of the conditional expectations:

βIGE =
Cov(log Ic, log Ip)

Var(log Ip)
=

∫ ∞

−∞

∂E[log Ic| log Ip = t]

∂t
w(t)dt,

where

w(t) =
E
[
log Ip − µIp | log Ip > t

]
P(log Ip > t)

Var(log Ip)
,

∫ ∞

−∞
w(t)dt = 1, µIp = E[log Ip].
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We can then interpret the IGE coefficient as a summary statistic of the underlying function E[log Ic| log Ip], where

the weights depend on the distribution of parental income. Specifically, these weights are maximized at E[log Ip] and

approach zero at the boundary of the support (Yitzhaki (1996), Heckman et al. (2006)). Thus, βIGE assigns higher

weight to households with the mean parental log income3 and lower weights to households at the top and bottom of

the parental log income distribution.

The fact that the IGE coefficient assigns lower weights to households at the extremes may be concerning in cases

in which a significant portion of mobility occurs for children from very poor or very rich families. This can potentially

occur as a result of policies aimed at reducing poverty or simply through regression to the mean. The fact that the

weights depend on the underlying parental log income distribution implies that comparisons of the IGE coefficients that

are cross-country or over time can be difficult to interpret. For instance, without knowing the exact weights, differences

between two countries may simply arise from differences in the weighting schemes used by the IGE coefficient, even if

the conditional expectation function E[log Ic| log Ip] is the same across both countries.

Notably, the fact that the IGE coefficient assigns higher weights to mobility around the mean may explain why

the IGE is considered sensitive to sample definitions and restrictions. Some sample restrictions, such as excluding

households with zero income or those with very high income, can significantly impact the mean of the distribution.

As a result, households that receive higher weights change and the IGE coefficient also changes.

To better understand how the IGE coefficient relates to the Rank-Rank coefficient and underlying income elastic-

ity,4 we aim to decompose the integrand into the expected parent-child income elasticity and additional correlative

mechanisms. Let the causal model governing child income be given as follows:

Ic = h(Ip, u), (3)

where u represents other unobserved factors that affect child income. Let ϵIc,Ip(u) =
∂ log Ic
∂ log Ip

be the elasticity of child

income with respect to parent income for given unobserved factors, u, evaluated at Ip. Let Ip(t) = exp(t) denote the

3Note that this is generally not the same as families with mean income.
4As noted by Mitnik and Grusky (2020), the IGE coefficient does not actually provide information about the parent-child income

elasticity, which is evident in our setup, as
∂E[log Ic| log Ip]

∂ log Ip
̸= E

[
∂ log Ic
∂ log Ip

| log Ip
]
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inverse of log Ip, where log Ip = t. We can then rewrite the integrand as follows:

∂E[log Ic| log Ip = t]

∂t
=

∫ ∞

−∞

∂ log h (Ip (t) , u)P (u| log Ip = t)

∂t
du

= E

[
ϵIc,Ip(t)(u)

∣∣∣∣ log Ip = t

]
︸ ︷︷ ︸

Causal IGE

+

∫ ∞

−∞
log h (Ip (t) , u)

∂P (u| log Ip = t)

∂t
du︸ ︷︷ ︸

Other Factors

,
(4)

where the second equality follows from the product rule. The first component captures the conditional expected causal

IGE, while the second component captures how changes in income are associated with changes in other factors that

affect income.5 Therefore, βIGE can be expressed as a summation of the weighted causal intergenerational elasticities

(causal IGE) and an additional term that captures how parental income is correlated with other factors that affect

child income. In most studies of intergenerational mobility, both terms are crucial as researchers are interested in

measuring how parent income is associated with child income, through either the causal effect of parental income or

the association between parental income and other factors such as neighborhood quality, quality of schools, inherited

human capital, and peer effects.

Decomposing the Rank-Rank coefficient

We now turn our attention to the Rank-Rank coefficient. Using Yitzhaki’s theorem once more, we have the following:

βr =
Cov(Rc, Rp)

Var(Rp)
=

∫ 1

t=0

∂E[Rc|Rp = t]

∂t
w(t)dt,

where, using the fact that the rank distribution is uniform, the exact weighting scheme is as follows:

w(t) =
12(1− t)t

2
,

∫ 1

0

w(t)dt = 1.

Comparing the weights of the IGE coefficient to the Rank–Rank coefficient, the Rank–Rank weights place most

of the weight on households at the median of the parental income distribution. In contrast, the IGE assigns most

of the weight to households closer to the mean of the distribution. In addition, weights decline symmetrically as we

5This decomposition of the βIGE can be thought of as an omitted variable bias. In this case, bias is taken with respect to the Ordinary
Least Squares weighted causal effects of log parental income, as implied in Yitzhaki’s theorem.
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move further away from the median and toward the extremes. Thus, similar to the βIGE coefficient, the Rank–Rank

coefficient assigns lower weights to households closer to the top and bottom of the parental income distribution.

Notably, since the median is usually less sensitive to changes in sample restrictions at the top and bottom of the

distributions, this weighting scheme might explain why the Rank–Rank coefficient has been documented to be more

robust for different sample restrictions (Dahl and DeLeire (2008), Chetty et al. (2014b)). Finally, compared with the

IGE coefficient, the weights for cross-country comparisons are more consistent, assigning similar weights to households

at the same rank of the income distribution. Note that, if the marginal distributions differ across countries, this implies

that the Rank–Rank weighting scheme assigns different weights to households with the same income levels. Whether

this is desirable depends on the researcher’s questions and objectives.

As we did for the IGE coefficient, we can express the Rank-Rank coefficients in terms of the underlying parent-

child income elasticities. Let ϵc and ϵp be the elasticities of rank with respect to income for the child and parents,

respectively. Let Rcϵc = Rc
∂Rc

∂Ic
Ic
Rc

and Rpϵp = Rp
∂Rp

∂Ip

Ip
Rp

represent the semi-elasticities of rank with respect to income.

These quantities measure how the rankings of parents and child change in response to a percentage variation in their

respective incomes. We can then rewrite, with a slight abuse of notation, the integrand as follows:6

∂E[Rc|Rp = t]

∂t
=

∂E[Fc

(
h
(
F−1
p (t), u

))
|Rp = t]

∂t

=

∫ ∞

−∞

∂Fc

(
h
(
F−1
p (t) , u

))
P (u|Rp = t)

∂t
du

= E

[
∂Rc

∂h

∂h

∂Ip

1
∂Rp

∂Ip

∣∣∣∣Rp = t

]
+

∫ ∞

∞
Fc(h(F

−1
p (t), u)

∂P (u|Rp = t)

∂t
du

= E

[
∂Ic
∂Ip

∂Rc

∂Ic
∂Rp

∂Ip

Ic
Ic

Ip
Ip

Rc

Rc

Rp

Rp

∣∣∣∣Rp = t

]
+

∫ ∞

∞
Fc(h(F

−1
p (t), u)

∂P (u|Rp = t)

∂t
du

= E

[
Rc

Rp

ϵc
ϵp
ϵIc,Ip(u)

∣∣∣∣Rp = t

]
︸ ︷︷ ︸

Re-Scaled Causal IGE

+

∫ ∞

∞
Fc(h

(
F−1
p (t), u)

) ∂P (u|Rp = t)

∂t
du︸ ︷︷ ︸

Other factors

,

(5)

where the third equality is due to the product rule and the chain rule. The fourth equality results from dividing

and multiplying by parents and child income and ranks and the definition of the parents and child ranks.7 The final

6Maasoumi et al. (2022) expresses the Rank-Rank coefficient as a weighted average of
∂E[log Ic| log Ip=t]

∂t
, with weights that are generally

positive but do not necessarily sum to 1. In contrast, we express the Rank-Rank coefficient as a weighted average of
∂E[Rc|Rp=t]

∂t
with

weights that sum to 1.
7For the sake of clarity, we slightly abuse notation and denote Ic = h

(
F−1
p (t), u

)
, Rc = Fc

(
h
(
F−1
p (t), u

))
, Ip = F−1

p (t), and Rp = t.
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equality follows from the definition of semi-elasticities. Expressing the integrand in this way reveals the similarities and

differences between the IGE coefficient and the Rank-Rank coefficient. First, as child income cumulative distribution

function is monotonic, similar to the log function, the effects of other factors on income have remained the same,

except that we use child marginal income distribution to transform the income instead of log. Likewise, the Rank-

Rank coefficient is also affected by the causal effects of the IGE, but now the IGE is multiplied by a “translation”

term that converts the income elasticities to rank elasticities.

If we are using the Rank–Rank coefficient for cross-country comparisons, the decomposition we derived above

explicitly demonstrates that the Rank–Rank coefficient is only useful for comparisons of positional mobility. However,

It cannot speak to how similar or different the mechanisms driving this mobility are across countries.8 For example,

consider two countries with the same underlying causal mechanisms h(Ip, u) and assume that Ip ⊥⊥ u, which implies

that the second term is zero. If the parental income distributions differ across the two countries, the Rank-Rank

coefficient would still be different for two reasons. The first reason is that, although the weighting scheme is the same

for households with the same income rank, the regression weighting scheme weights households with the same income

level differently. The second and more substantial reason is that the way that the causal mechanisms affect rank would

differ between the two countries as the semi-elasticities are different in the causal IGE term in equation 5. Therefore,

although we might motivate the use of the Rank-Rank coefficient as a means to abstract away from the marginals, we

cannot avoid considering the marginals if we want to use the Rank-Rank coefficient to think about differences in the

driving mechanisms of mobility between two countries.

Discussion

This paper employs Yitzhaki’s theorem to express IGE and Rank-Rank coefficients as weighted averages of the causal

mechanisms driving income and positional mobility. We demonstrate that interpreting cross-country comparisons using

the IGE coefficient can be challenging due to the regression weighting scheme. Additionally, we establish that the

Rank-Rank coefficient is readily interpretable only when researchers focus on positional mobility, without providing

insights into the similarities or differences in the underlying mechanisms driving mobility across countries.

We highlight the potential drawbacks of using linear regression coefficients as summary statistics. Linear regression

8In theory, the Rank–Rank coefficient can be more informative on causal mechanisms that operate directly from parent income rank to
child income rank, bypassing income levels. We leave this observation for future research.
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may be preferred in certain cases for its efficiency and stability, even with a small number of observations. However,

it seems that in the context of intergenerational mobility comparisons, this is not always warranted. Recent research

has shifted to using large administrative datasets that can provide precise estimates of the relation between parent

and child income. Consequently, the practice of reporting regression coefficients over estimates from more flexible and

transparent methods may not always be well justified.
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