On the Interpretation of the Intergenerational Elasticity and the Rank-Rank Coefficients for Cross Country Comparison - Online Appendix

January 27, 2024

In this section we follow Heckman et al. (2006) to construct the proof of Yitzhaki's theorem (Yitzhaki (1996)).

Theorem 1. (Yitzhaki's theorem) Let (Y, X) be i.i.d, assume $E[|X|], E[|Y|] < \infty$ assume that E[Y|x] exists and is differentiable for every $x \in supp(X)$. Denote $\mu = E[X]$ and let f(x) be the probability density function of X, then

$$\frac{\operatorname{Cov}(Y,X)}{\operatorname{Var}(X)} = \int_{-\infty}^{\infty} \frac{\partial E[Y|x=t]}{\partial t} w(t) dt,$$

where

$$w(t) = \frac{1}{\operatorname{Var}(X)} \int_{t}^{\infty} (x - \mu) f(x) dx = \frac{1}{\operatorname{Var}(X)} E[X - \mu | X > t] P(X > t) dx,$$

and the weights satisfy $\int_{-\infty}^{\infty} w(t) = 1$, $\lim_{t \to \infty} w(t) = 0$, $\lim_{t \to -\infty} w(t) = 0$, $\mu = \arg \max_t w(t)$ and are increasing for $t < \mu$ and decreasing for $t > \mu$.

Proof. We follow Heckman et al. (2006)

$$\operatorname{Cov}(Y, X) = \operatorname{Cov}(E[Y|x], X)$$
$$= \int_{-\infty}^{\infty} E[Y|x = t](t - \mu)f_x(t)dt.$$

Using integration by parts we have the following:

$$\int_{-\infty}^{\infty} E[Y|x=t](t-\mu)f_x(t)dt = \left[E[Y|x=t]\int_{-\infty}^{t} (u-\mu)f_x(u)du\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{\partial E[Y|x=t]}{\partial t}\int_{-\infty}^{t} (u-\mu)f_x(u)dudt$$
$$= -\int_{-\infty}^{\infty} \frac{\partial E[Y|x=t]}{\partial t}E[X-\mu|X$$

using the fact that

$$E[X - \mu] = 0 = E[X - \mu|X < t] P(X < t) + E[X - \mu|X < t] P(X > t) P(X > t)$$

we obtain the following:

$$\operatorname{Cov}(Y,X) = \int_{-\infty}^{\infty} \frac{\partial E[Y|x=t]}{\partial t} E[X-\mu|X>t] P(X>t) dt.$$

Therefore the weights are obtained as follows:

$$w(t) = \frac{1}{\operatorname{Var}(X)} \int_{t}^{\infty} (u-\mu)f(u)du = \frac{1}{\operatorname{Var}(X)} E[X-\mu|X>t] \mathbf{P}(X>t).$$

To see that the weights integrate to one, can employ integration by parts once more.

$$\operatorname{Var}(X) = \int_{-\infty}^{\infty} (t-\mu)(t-\mu)f(t)dt = \left[(t-\mu) \int_{-\infty}^{t} (u-\mu)f(u)du \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \int_{-\infty}^{t} (u-\mu)f(u)dudt$$
$$= \int_{-\infty}^{\infty} \int_{t}^{\infty} (u-\mu)f(u)dudt$$

which implies $\int_{-\infty}^{\infty} w(t) = 1$. The definition of the weights reveal that the weights go to zero at the boundary of the support. To see that the weights are maximized at $t = \mu$, notice that for any $t < \mu$ we have the following:

$$\int_{t}^{\infty} (x-\mu)f(x)dx - \int_{\mu}^{\infty} (x-\mu)f(x)dx = \int_{t}^{\mu} (x-\mu)f(x)dx < 0$$

Similarly for any $t > \mu$ we have the following:

$$\int_{t}^{\infty} (x-\mu)f(x)dx - \int_{\mu}^{\infty} (x-\mu)f(x)dx = -\int_{\mu}^{t} (x-\mu)f(x)dx < 0$$

Finally, to see that the weights are increasing to the left of the mean and decreasing to its right, the first derivative is obtained as follows:

$$\frac{\partial w(t)}{\partial t} = -(t-\mu)f(t)$$

which is decreasing for every $t > \mu$ and increasing for every $t < \mu$.

References

- James J. Heckman, Sergio Urzua, and Edward Vytlacil. Understanding instrumental variables in models with essential heterogeneity. *The Review of Economics and Statistics*, 88(3):389–432, 2006.
- Shlomo Yitzhaki. On using linear regressions in welfare economics. Journal of Business & Economic Statistics, 14(4):478–486, 1996.