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In this section we follow Heckman et al. (2006) to construct the proof of Yitzhaki’s theorem (Yitzhaki (1996)).

Theorem 1. (Yitzhaki’s theorem) Let (Y,X) be i.i.d, assume E[|X|], E[|Y |] < ∞ assume that E[Y |x] exists and is

differentiable for every x ∈ supp(X). Denote µ = E[X] and let f(x) be the probability density function of X, then

Cov(Y,X)

Var(X)
=

∫ ∞

−∞

∂E[Y |x = t]

∂t
w(t)dt,

where

w(t) =
1

Var(X)

∫ ∞

t

(x− µ)f(x)dx =
1

Var(X)
E[X − µ|X > t]P(X > t)dx,

and the weights satisfy
∫∞
−∞ w(t) = 1, limt→∞ w(t) = 0, limt→−∞ w(t) = 0 ,µ = argmaxt w(t) and are increasing for

t < µ and decreasing for t > µ.

Proof. We follow Heckman et al. (2006)

Cov(Y,X) = Cov(E[Y |x], X)

=

∫ ∞

−∞
E[Y |x = t](t− µ)fx(t)dt.
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Using integration by parts we have the following:

∫ ∞

−∞
E[Y |x = t](t− µ)fx(t)dt =

[
E[Y |x = t]

∫ t

−∞
(u− µ)fx(u)du

]∞
−∞

−
∫ ∞

−∞

∂E[Y |x = t]

∂t

∫ t

−∞
(u− µ)fx(u)dudt

= −
∫ ∞

−∞

∂E[Y |x = t]

∂t
E[X − µ|X < t]P(X < t)dt,

using the fact that

E[X − µ] = 0 = E[X − µ|X < t]P(X < t) + E[X − µ|X < t]P(X > t)P(X > t)

we obtain the following:

Cov(Y,X) =

∫ ∞

−∞

∂E[Y |x = t]

∂t
E[X − µ|X > t]P(X > t)dt.

Therefore the weights are obtained as follows:

w(t) =
1

Var(X)

∫ ∞

t

(u− µ)f(u)du =
1

Var(X)
E[X − µ|X > t]P(X > t).

To see that the weights integrate to one, can employ integration by parts once more.

Var(X) =

∫ ∞

−∞
(t− µ)(t− µ)f(t)dt =

[
(t− µ)

∫ t

−∞
(u− µ)f(u)du

]∞
−∞

−
∫ ∞

−∞

∫ t

−∞
(u− µ)f(u)dudt

=

∫ ∞

−∞

∫ ∞

t

(u− µ)f(u)dudt

which implies
∫∞
−∞ w(t) = 1. The definition of the weights reveal that the weights go to zero at the boundary of the

support. To see that the weights are maximized at t = µ, notice that for any t < µ we have the following:

∫ ∞

t

(x− µ)f(x)dx−
∫ ∞

µ

(x− µ)f(x)dx =

∫ µ

t

(x− µ)f(x)dx < 0

Similarly for any t > µ we have the following:

∫ ∞

t

(x− µ)f(x)dx−
∫ ∞

µ

(x− µ)f(x)dx = −
∫ t

µ

(x− µ)f(x)dx < 0
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Finally, to see that the weights are increasing to the left of the mean and decreasing to its right, the first derivative is

obtained as follows:

∂w(t)

∂t
= −(t− µ)f(t)

which is decreasing for every t > µ and increasing for every t < µ.
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