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Abstract

The interpretation of coefficients from multivariate linear regression relies on the
assumption that the conditional expectation function (CEF) is linear in the variables.
However, in many cases the underlying data generating process is nonlinear. This
paper examines how to interpret regression coefficients under nonlinearity. We show
that if the relationships between the variable of interest and other covariates are linear,
then the coefficient on the variable of interest represents a weighted average of the
derivatives of the outcome CEF with respect to the variable of interest. Interestingly,
if these relationships are nonlinear, the regression coefficient becomes biased relative
to this weighted average. We show that this bias is interpretable, analogous to the
biases from measurement error and omitted variable bias under the standard linear
model.
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1 Introduction

Multivariate linear regression is a fundamental tool across most scientific disciplines. Its

main usage is to explore the relationship between different variables, assessing the average

change in an outcome variable in response to an increase in the variable of interest (e.g

Wooldridge [2015], Weisberg [2005], Greene [2003], Cunningham [2021], Montgomery et al.

[2012]). For example, in environmental science, researchers may want to know what an

increase in air quality implies for public health outcomes. To do this, researchers usu-

ally regress various outcomes on air quality measures, controlling for other variables like

socioeconomic status and urbanization. They then interpret the regression coefficient on

air quality as the change in health outcomes in response to a unit increase in air quality,

holding the control variables fixed. Multivariate linear regression is not only used to de-

scribe correlation, but also extremely popular in causal analysis in observational studies.

When researchers want to estimate a causal effect, they often operationalize the conditional

independence assumptions (Pearl [2009], Cunningham [2021], Angrist and Pischke [2009])

necessary for identifying causal relationships by regressing an outcome variable on the vari-

able of interest and a set of control variables. The regression coefficient is then interpreted

as the causal effect of a change in the variable of interest on the outcome.

Whether multivariate linear regression is used to learn about causal effects or the corre-

lation between variables, the clarity of interpretation largely hinges on the linearity of the

conditional expectation function. If this function is indeed linear, the regression coefficient

represents the constant marginal effects of the variable of interest, while controlling for

other variables. However, if the function is non-linear, the regression coefficients might not

reflect the marginal effect of the variable of interest accurately. This paper extends the

findings of Yitzhaki [1996] to show how the coefficient of the variable of interest in a mul-

tivariate regression relates to the derivative of the conditional expectation function with

respect to that variable. We demonstrate that when the relationship between the variable

of interest and other covariates is linear, the regression coefficient for the variable of inter-

est represents a weighted average of the derivatives of the conditional expectations of the

outcome variable, with respect to the variable of interest. These weights resemble those

found in Yitzhaki [1996], yet they are conditioned on the covariates and averaged across

them. We also demonstrate that if the relationship is non-linear, the coefficient becomes

biased relative to this weighted average. This bias is interpretable, and akin to the omitted

variable bias and classical measurement error that arise when the data generating process

is linear.

There are other interpretations of the coefficient of linear regression. Yitzhaki [1996]

demonstrates that in a multivariate regression, each coefficient can be interpreted as a
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weighted sum of coefficients of all variables from a simple regression of the outcome on

a univariate control. This interpretation is hard to form intuition for, and does not align

with the standard intuition of linear regression in which the coefficient measures the change

in outcomes, ”holding other variables fixed.” Most similar to our results, Angrist and

Krueger [1999] shows that, in the case of the coefficient on a discrete treatment variable in

a multivariate regression with fully saturated control variables, the regression coefficient on

the variable of interest can be thought of as a weighted average of the treatment effect on

different groups of “compliers” to the treatment, which is similar to what we demonstrate

here for the continuous case and correctly specified model. Additionally, recent papers in

econometrics have focused on the interpretation of the regression coefficient as a weighted

average of treatment effects. Goldsmith-Pinkham et al. [2022] shows that, in the case where

we regress an outcome variable on multiple treatment indicator variables, the coefficient

on these variables is generally contaminated by the effects of other treatment variables.

Similarly, recent literature has discussed the interpretation of the regression coefficient

in difference-in-differences and event study outcome models (Callaway et al. [2021], Roth

et al. [2022], Sun and Abraham [2021], de Chaisemartin and D’Haultfoeuille [2022]), and

shows how these coefficients can be thought of as different weighted sums of the underlying

heterogeneous treatment effects. In our paper, we focus on the case of a continuous variable

of interest with a set of control variables and how the imposition of a linearity structure

in the estimation stage summarizes the underlying conditional expectation function, and

how imposing linearity may generate interpretable biases that should be taken into account

when discussing the interpretation of regression coefficients. We also focus on the derivative

of the conditional expectation with respect to the variable of interest and not the causal

effect, although, as discussed below, the results here can easily inform a discussion on the

coefficient of interest when the estimated quantity is the causal effect.

2 The Univariate Case

We begin by considering the univariate case. Suppose that the underlying data generating

process (DGP) is represented by the function:

Y = g(T, ϵ),

where Y is the outcome of interest, T is a continuous variable of interest, ϵ represents

unobserved variables that influence the outcome and may be correlated with T , and g

is the function that delineates the DGP. A researcher interested in the effect of T might
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estimate its coefficient in the linear model:

Y = α + βT + u. (1)

In the univariate case, Yitzhaki’s theorem (Yitzhaki [1996]) provides a method to associate

the population regression coefficient with the underlying DGP. Specifically, under certain

regularity conditions, Yitzhaki demonstrates that

β =

∫ ∞

−∞

∂E[Y |t]
∂t

w(t)dt, (2)

where w(t) = E[T−E[T ]|T>t]P(T>t)
Var(T )

and
∫∞
−∞ w(t) = 1. These weights are maximized at E[T ]

and are increasing on the left of the maximum value and decreasing on the right, assigning

zero weight to the values at the boundaries of the support.1 Moreover, if ϵ is independent

of T , then the regression coefficient provides us with a positively weighted average of the

marginal causal effects of T on Y

∂E[Y |T = t]

∂t
= E

[
∂g(t, ϵ)

∂t

]
.

3 The Naive Regression weighted Effect and Multi-

variate Regression

In this section, we extend Yitzhaki’s result to the more generalized case, where we allow

for additional control variables. Assume the DGP is now represented by the following two

equations:

Y = g(T,X, υ), (3)

T = h(X, ε), (4)

where υ and ε are unobserved variables that influence the outcome and the variable of

interest’s value, respectively, and h and g are the underlying causal functions that govern

the DGP.

When researchers want to learn on how a change in variable of interest, T , affects the

expected outcome variable Y , they often resort to using linear regression. Specifically, they

1The weights can also be thought of a density function, but notice that the density is different than the
density of T
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may estimate the following linear model:2

Y = Tβ +Xγ + ϵ. (5)

If researchers do not want to assume that the DGP is linear, they often interpret the

coefficient on the variable of interest, β, as an average of the marginal effect of T , holding

X fixed. Naturally, one might wonder how Yitzhaki’s theorem applies to this multivariate

context and how we should interpret β in this scenario.

To answer this question, we first define the ”Naive Regression-Weighted Effect” (NRWE)

as:

NRWE = E

[ ∫ ∞

−∞

∂E[Y |t,X]

∂t
w(t,X)dt

]
, (6)

where w(T,X) = E[T−E[T ]|T>t,X]P(T>t|X)
E[Var(T |X)]

and the expectation is taken over X. This pa-

rameter intuitively extends Yitzhaki’s interpretation of β from the univariate case to the

multivariate case. To see that, first notice that for each X-cell, the numerator of the

weights assigns the same weight that Yitzhaki’s weights would assign in a regression of the

outcome variable on T at the particular value of X. The denominator of the weights is

simply the average over the conditional variance of T , which ensures that the weights sum

to 1, in a manner similar to Yitzhaki’s original weights. Secondly, if we further assume

that υ independent of T given X, T ⊥⊥ υ|X, then the NRWC provides us with a weighted

average of causal effects.

E

[ ∫ ∞

−∞

∂E[Y |t,X]

∂t
w(t,X)dt

]
= E

[
E

[ ∫ ∞

−∞

∂g(t,X, υ)

∂t
w(t,X)dt

∣∣∣∣X]]
.

The Multivariate version of Yitzhaki’s theorem, detailed below, reveals that the population

regression coefficient, β, is equivalent to the NRWE only when the relationship between

the controls and the variable of interest is linear. In other cases, it often yields a biased

estimate in relation to the Naive Regression-Weighted Effect.

Proposition 1 (Multivariate Yitzhaki’s Theorem). Denote by π the coefficients of X

in the population regression of T on X. Denote by µ(X) = E[T |X] and denote the

misspecification error by ∆(X) = µ(X)− πX. Assume the first and second moments and

conditional moments exist and that the conditional expectations E[Y |T,X] is differentiable

with respect to T , then the regression coefficient on the variable of interest, β, in the

2Throughout the analysis, we assume that X contains a constant.
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population regression, Y = Tβ +Xγ + ϵ, is given by:

β =
Cov(Y, (T − µ(X))

Var(T − µ(X)) + Var(∆(X))︸ ︷︷ ︸
Weighted Effect of T

+
Cov(Y,∆(X))

Var(T − µ(X)) + Var(∆(X))︸ ︷︷ ︸
Misspecification Bias

= EX

[ ∫ ∞

−∞

∂E[Y |T = t,X]

∂t
w(t,X)dt

]
︸ ︷︷ ︸

Weighted Effect of T

+
Cov(Y,∆(X))

EX [Var(T |X)] + Var(∆(X))︸ ︷︷ ︸
Misspecification Bias

,

where

w(t, x) =
E[T − µ(X)|T > t,X]P(T > t|X)

EX [Var(T |X)] + Var(∆(X))
≥ 0.

The proof, detailed in the appendix, applies the Frisch-Waugh-Lovell Theorem and inte-

gration by parts.3 The immediate observation from Proposition 1 is that, generally, β does

not equal the NRWE. This difference is driven by two factors. First, the weights w(t, x),

while resembling those of the NRWE, do not integrate to 1. These weights induce a bias

akin to the classical measurement error attenuation bias (e.g., Wooldridge [2015]), which

attenuates the effect of T compared to the NRWE. If the variance of the misspecification

error is non-zero, Var(∆(X)) > 0, then the effect of T weighted in β would be smaller than

in the NRWE. Note also that the attenuation is generally larger if the set of covariates

can explain more of the variable of interest. Specifically, as X better explains T , then

Var(T |X) decreases, leading to a greater attenuation of the weighted effect of T compared

to NRWE.

The second source of bias in β compared to the NRWE is the misspecification bias,

driven by the covariance between the misspecification error and the outcome variable. To

better understand this bias, we consider different DGPs. First, let us assume g(T,X, υ) =

βT+γX+υ, and allow h to be unrestricted. In this case, the outcome equation is correctly

specified. By using the standard argument from the consistency of the OLS, we understand

that the population regression coefficient equals the structural β, and, is therefore, trivially

equal to the NRWE parameter.4 Next, let us consider the case in which h, the function

governing the intensity of the variable of interest, is linear in X. In this case, ∆(X) = 0

for all X, and Proposition 1 shows that both the bias term and Var(∆(X)) equal zero,

which implies that β equals the Naive Regression Weighted Effect.

Finally, let us consider the case where both g(T,X, υ) and h(X, ϵ) are non-linear in

3Angrist and Krueger [1999] demonstrated for the discrete case, with a fully saturated regression, a
similar equivalence between a discrete equivalent of NRWE and the regression coefficient

4To see this through the lens of Proposition 1, notice that:

Cov(Y, T − µ(X)) + Cov(Y, µ(X)− πX) = Cov(Y, T − πX) = βCov(T, T − πX).

Divide by the denominator to get β.
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X. In this scenario, the population regression coefficient doesn’t yield a weighted average

of treatment effects. Instead, it gives a weighted average of the marginal effect of T and an

additional bias term, which is introduced by the correlation between the outcome variable

Y and ∆(X). These ∆(X) terms represent deviations of the conditional expectations from

their best linear approximation.5 If these deviations are systematically correlated with the

outcome variable, our estimate will be biased. If, however, we find that Cov(Y,∆(X)) = 0

but Var(∆(X)) ̸= 0, then the bias term in Proposition 1 becomes zero, but the measured

effect is attenuated due to the variance of the mismeasurment error in the denominator.

Even when control variables enter the outcome equation linearly, there can still be a bias

if the treatment variable, T , has a nonlinear effect on the outcome. Specifically, consider

g(T,X, υ) = f(T ) +Xγ + υ. In this scenario, β would not, in general, equal NRWE. To

illustrate this, let us again assume that T ⊥⊥ υ|X and E[υ|X] = 0. Then, we have:

Cov(Y,∆(X)) = Cov(f(T ) +Xγ + υ, T − πX − (T − µ(X))

= Cov(f(T ),∆(X))) ̸= 0,

where the second equality stems from the mean zero assumption, and the fact that the

residuals are not correlated with X. This example demonstrate that even when the condi-

tional expectation function is linear in the control variables, misspecification bias can arise

generally, if f(T ) and X are correlated. Hence, in the process of selecting control variables

for regression analysis, it is imperative for researchers to prioritize examining how the vari-

able of interest interacts with the control variables. This approach is more important than

assessing the impact of control variables on the outcome variable.

A different perspective on the resulting bias can be achieved by expressing ∆(X) as

the difference between residuals:

∆(X) = µ(X)− πX = T − πX︸ ︷︷ ︸
Unexplained Due to

Linearity Restrictions

− T − µ(X)︸ ︷︷ ︸
Fundamentally

unexplained

.

This equation illustrates that the bias arises from the variation in T that could potentially

be explained using the control variables, but remains unexplained due to the linear con-

straints of the model.6 Consequently, if these unexplained components are correlated with

the outcome variable, additional bias is introduced because the model does not account

for these components. Conversely, in the absence of such correlation, attenuation bias

emerges due to the misestimation of the control variables’ effect on the variable of interest,

5Recall that the coefficients provide the best linear approximation to the conditional expectations. See,
for example,(Angrist and Pischke [2009])

6Notice that (T − µ(X))− (T − πX) is the residual from a linear projection of T − µ(X) on T − πX.
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T , resulting from the linearity restriction.

Under what conditions can we expect that the coefficient on the variable of interest cap-

tures the NRWE? First, if our regression is fully saturated and all control variables are

discrete, then the linear approximation of the conditional expectation is exact, and the

misspecification error is zero, µ(x) = 0 for all x, eliminating both the bias term and the

attenuation effect. Another example where the bias is zero occurs when the joint distribu-

tion of the explanatory variable (and not necessarily the joint distribution of the outcome

variables and explanatory variables) belongs to the Elliptically Contoured distributions7;

here, the conditional expectation of the variable of interest is linear in the other variables,

avoiding the misspecification bias and attenuation bias. Additionally, in some instances,

including sufficient interaction terms between variables can approximate the underlying

data-generating function, thereby reducing biases (e.g., Hastie et al. [2009]).

In general, the linearity assumption is unlikely to hold, and both misspecification bias

and attenuation bias may arise, necessitating a thorough evaluation of the relationships

between variables. For instance, if higher values of the control variables X tend to increase

both the variable of interest and the outcome variable in a convex manner, then the linear

projection will likely underestimate T at high values of X. This situation implies that

∆(X) is likely to be positive for higher values of X, and consequently, it may be positively

correlated with the outcome Y , suggesting Cov (Y,∆(X)) ≥ 0. Such a scenario would

induce an upward bias in β compared to the weighted effect component. For example,

consider researchers exploring the effect of parent income on a child’s years of schooling

while controlling for the parent level of education. Previous studies have shown that av-

erage income grows exponentially with years of schooling8 (e.g., Mincer [1974], Heckman

et al. [2003]). Hence, the relationship between parent schooling and income is likely to be

increasing, and linear projection would underestimate parent income at high values. Since

the parent years of schooling are likely to be positively correlated with a child’s years of

schooling, our estimate for the effect of parent income is likely to be biased. Conversely, if

researchers aim to examine the influence of parent educational level on a child’s educational

attainment while controlling for income, the role of the control variable and the variable of

interest is reversed. In this case, the average parent years of schooling is a concave function

(log) of parent income. Then, ∆(X) will likely be negative for higher values of X (linear

projection overestimates T at high values X). In this case, if parent income increases a

child’s years of schooling in a convex manner, then the misspecification bias is likely to be

negative.

7The Elliptically Contoured distributions famously include the multivariate Gaussian distribution.
8Usually the relation is described as log-linear.
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3.1 Numerical Illustration

In this section, we demonstrate, using a numerical example, that under different data

generating process, the size of two biases, the attenuation and misspecification bias, can

be substantial and lead to incorrect conclusions. We assume the following DGP:

T = h(X) + ν

Y = g(T,X) + ϵ,

where h(·) and g(·) will be defined later and

X ∼ U(0, 5), ν ∼ N(0, 1), ϵ ∼ N(0, 1).

In this DGP, where the conditional distribution of T |X is Normal, we can derive a closed

form expression for the weights derived in Proposition 1. Specifically, we have the following:

E[T − E[T |X] | T > t,X] · P (X > t | X) =h(X) + σ
ϕ
(

t−h(X)
σ

)
1− Φ

(
t−h(X)

σ

) − h(X)

 ·
(
1− Φ

(
t− h(X)

σ

))
=

σϕ

(
t− h(X)

σ

)
.

Similarly, as the conditional variance of T, is fixed for any x value, we have E[Var(T |X)] =

σ2. Therefore, the weights are:

w(t,X) =
σϕ

(
t−log(X)

σ

)
σ2

=
ϕ
(

t−log(X)
σ

)
σ

which is simply the Normal distribution density function, and we can approximate NRWE

numerically using generating samples and estimating the mean derivative in the population

E

[
∂h(x)

∂x

]
≈ 1

n

n∑
i=1

∂h(xi)

∂xi

.

where n is the number of simulated samples. Similarly, we can approximate the bias term

by calculating the sample covariance, ˆCov(Y, ĥ(X)− π̂TT ), and the sample variance of the

residualized T , where π̂TT is the regression coefficient on T in a linear regression of Y on

T .

For our simulation, we generate 1, 000, 000 draws and perform a Monte Carlo simulation

exercise of 300 iterations. Table 1 below shows the results of these simulations for different
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data generating processes. The first row demonstrates the argument we’ve made in section

3. The relationship between the control variable, X, and the variable of interest, T , is

convex, and higher values of the control variables are associated with higher outcome

values. As the linear model underestimates the true value for high values of X, we get

that β is much larger than the NRWE, driven by the misspecification bias. Notice that

also the attenuation bias, computed as the difference between the weighted effect of T and

NRWE, is substantial, where the effect weight is driven to almost zero. The second row

demonstrates that even if the data generating process is linear in the variable of interest,

the regression coefficient can still be biased. In our example, the NRWE is 1, but the

regression coefficient is twice that size, 1.997. In this example, all the bias stems from

the misspecification, where, again, the role of the weighted effect has been attenuated to

almost zero. The third row demonstrates how the regression coefficient can lead us to

wrong coclusions on the link between Y and T . The third row demonstrates that even if

T does not affect directly the outcome variable, we may get a significant coefficient in our

regression analysis. In our data generating process we get that the coefficient size is driven

solely by misspecification bias.

NRWE β Misspecification Bias Weighted Effect of T Attenuation Bias

E[T |X] = exp(X)
E[Y |T,X] = sin(T ) +X

-0.0414 0.0049 0.0051 -0.0001 -0.0413

(0.0007) (0.0001) (0.0001) (0.0000) (0.002)
E[T |X] = exp(X)
E[Y |T,X] = T + exp(X)

1.000 1.997 1.994 0.003 0.995

NA (0.0001) (0.0002) (0.0002) (0.0733)
E[T |X] = sin(X)
E[Y |T,X] = sin(X) +X2 0.000 -0.405 -0.405 0.000 0.000

NA (0.0017) (0.0058) (0.0061) (0.001)

Table 1: Simulation Results
Notes: This table presents the results from a Monte Carlo exercise that calculates the de-

composition of the regression coefficient β, according to Proposition 1, from the regression model
Y = βT + αX + u, where the data generating process is specified in the first column. The coeffi-
cient β is decomposed into the misspecification bias and the weighted effect of T . The last column
shows the attenuation bias, calculated as the difference between the Näıve Regression Weighted
Effect and the weighted effect of T . Standard deviations of the estimated parameters are in paren-
theses.

4 Conclusion

Proposition 1 emphasizes the difficulties in interpreting regression coefficients when the

underlying data-generating process is not linear. However, it also provides guidance on

how researchers can address these biases when interested in the NRWE parameter. The

simplest approach to obtain an unbiased estimate of NRWE is to include an estimate
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of E[T |X] as a control variable in the regression9. To compute E[T |X], one can either

estimate it nonparametrically (e.g., Ullah and Pagan [1999]), or use prior knowledge of it

(Borusyak and Hull [2021]). However, this raises a question: if one can estimate E[T |X]

nonparametrically, why choose to estimate the causal effect using regression instead of

estimating the entire model nonparametrically? In many cases, researchers opt for linear

regression due to its efficiency and stability, two properties that do not always characterize

nonparametric estimators, especially when the dimensions of X are large. Therefore, if

researchers wish to use regression, it would be insightful to include in their analysis a

discussion on the relationship between the control variables and the variable of interest.

This can be done, for example, by plotting E[T |xj] for different components of X, or

provide theoretical justification for the use of linear controls.

Researchers should also bear in mind that the relationship between the variables of

interest and control variables are not generally invariant to monotonic changes. For in-

stance, researchers should be cautious when estimating a linear model where T enters the

regression linearly, and a similar model where they use log(T ) instead. Without altering

the control variable as well, as Proposition 1 shows, both models are unlikely to obtain

a weighted average of changes in the conditional expectation, and at least one of them is

likely to suffer from a misspecification bias. Hence, researchers should be more conscious

of how they model their control variables.

A Appendix

A.1 Proof of Proposition 1

Denote by π the coefficients from linear projection of T on X. Denote by f(T ) and f(T |X)

the density and conditional density of T . Using Frisch-Waugh-Lovell theorem (Frisch and

Waugh [1933]), we have that

β =
Cov(Y (T −Xπ)

Var(T − πX)
.

We start by focusing the numerator. Denote the conditional expectation of T , condition

on X by µ(X). Then we can express the numerator as

Cov(Y, T −Xπ) = Cov(Y, (T − µ(X) + µ(X)−Xπ)

= Cov(Y, (T − µ(X)) + Cov(Y, µ(X)−Xπ).

9This is because the conditional expectation, given the conditional expectation, is a trivial linear function
of the conditional expectation: E[T |E[T |X]] = E[T |X]
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Using the law of iterated expectations and integration by parts we can re-express the first

term as

Cov(Y, (T − µ(X)) = E[Y (T − µ(X)]

= EX [E[Y (T −X)|X]]

= EX [E[E[Y |T,X](T − µ(X)|X]]

= EX

[ ∫ ∞

−∞
E[Y |T,X](u− µ(X)f(u|X)du

]
= EX

[[
E[Y |u,X]

∫ t

−∞
(u− µ(X)f(u|X)dt

]∞
t=−∞

−
∫ ∞

−∞

∂E[Y |t,X]

∂t

∫ t

−∞
(u− µ(X)f(u|X)dudt

]
= EX

[ ∫ ∞

−∞

∂E[Y |t,X]

∂t
−
∫ t

−∞
(u− µ(X)f(u|X)dudt

]
= EX

[ ∫ ∞

−∞

∂E[Y |t,X]

∂t
E[T − µ(X)|T > t,X]p(T > t|X)dt

]
Where the last equality follows from the fact that

E[T − µ(X)|T > t,X]P(T > t|X) + E[T − µ(X)|T ≤ X]P(T ≤ t|X) = 0.

Therefore the numerator is given by

Cov(Y, T −Xπ) = EX

[ ∫ ∞

−∞

∂E[Y |t,X]

∂t
E[T − µ(X)|T > t,X]p(T > t|X)dt

]
+ Cov(Y, µ(X − πX).

Next, we turn to the denominator. We can re-express it as

Var(T − πX) = Var(T − µ(X) + µ(X)− πX)

= Var(T − µ(X)) + Var(µ(X)− πX)) + 2Cov(T − µ(X),Var(µ(X)− πX))

= Var(E[T − µ(X)|X]) + E[Var(T |X)] + Var(µ(X)− πX))

= E[Var(T |X)] + Var(µ(X)− πX)),

where we used the law of total variance and the fact that Cov(T − µ(X), µ(X)− πX) =

E[(T − µ(X)(µ(X)− πX))] = 0, due to the law of iterated expectations, which concludes

the proof.
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