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Abstract

How much of the gap in choices across social groups is driven by differences in returns or the

ability to predict these returns? To address this question, we employ a decomposition exercise,

based on a structural model, to quantify the roles of information quality and differences in

returns in driving this gap, focusing on the college attendance decisions of White and Hispanic

high school students in Texas. We find that the average monetary returns from college are

almost zero for Hispanics, in contrast to being high for Whites. We then estimate the extent

to which differences in returns and information quality contribute to the gap in choices. Our

findings indicate that differences in information quality across the two groups help mitigate the

choice gap, whereas differences in returns drive the gap. Finally, we use our model to show that

achieving parity in choice between the two groups would require policymakers to provide highly

accurate additional information, potentially explaining between 24% and 49% of the variance

in post-college earnings.
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1 Introduction

In social systems, where individuals’ life trajectories are shaped by choices, understanding

the determinants of these choices is crucial, particularly in the pursuit of equality. Standard

economic models assume that individuals weigh the costs against the benefits of their de-

cisions. However, it is rarely the case that individuals can perfectly predict the outcomes

of their choices. In reality, they operate under significant uncertainty and have limited pre-

dictive capabilities about the consequences of their actions. This gap in information and

prediction abilities affects the choices different people make, potentially widening or narrow-

ing societal inequities. Therefore, it is essential to assess the extent to which these frictions

contribute to differences in decision-making processes and choices.

In this paper, we focus on quantifying how differences across social groups in their ability

to predict outcomes contribute to the choice gap across these groups in a binary choice

setting. To answer this question, we use a simple choice model framework (Roy (1951)),

where individuals facing a binary choice opt in if they perceive the potential returns to be

higher than their threshold. We assume that individuals receive informative signals prior

to making the decision and use them to form beliefs that guide their choice. We focus

on the difference in choice behavior across two groups that stems from members of the two

groups having access to different quality signals, which affects the quality of their predictions.

Specifically, we measure the quality of information each group has by quantifying the share

of variance in returns that can be explained by the signals observed by each group. We then

say that one group has better information than the other if that group can explain a larger

share of variance in their returns. In our analysis, we model the total returns variance as

stemming from both the actual uncertainty in returns, which is driven by the underlying

data-generating process and the model uncertainty regarding this underlying data-generating

process.

In our model, differences in choice are driven by, first, the underlying distribution of

returns, and second, the quality of information on these returns. This bifurcation of the

choice problem motivates us to adopt a decomposition method akin to that of Kitagawa

(1955), Blinder (1973), and Oaxaca (1973) to explore what drives the choice gap. Our

approach breaks the choice discrepancy into two channels: the information channel and the
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returns channel. The information channel quantifies how much of the gap is driven by the

fact that the two groups have access to different information sources. It does so by equalizing

the information quality across the two groups, holding the returns distribution fixed, and

examining how the choice gap changes. The residual difference, as captured by the returns

channel, examines what the choice gap would be if we equalized the net returns between the

two groups while maintaining their distinct information qualities on those returns.

We apply a decomposition approach to examine the 8% gap in college attendance rates

between Hispanic and White students in Texas. To do so, we use administrative data from

Texas, which includes information on whether individuals attend a 4-year college and their

post-high school earnings. We assume that these high school students observe informative

signals on the monetary returns to college, drawn from a Gaussian distribution, which they

use to form beliefs on returns. They are then self-select into college based on their posterior

beliefs about the monetary returns from college, opting in if their beliefs are higher than

their threshold.

Although in our analysis we impose a Gaussian structure, key components of the model

are nonparametrically identified. In our model, beliefs dictate choice patterns, this allows

us to use choice data to nonparametrically identify the distribution of beliefs and earnings

for each group. Specifically, building on the marginal treatment effect literature (Heckman

and Vytlacil (2005)) we show how in our model the beliefs distribution is identified. We

assume that we have a continuous instrument that shifts the cost of attendance. In our

empirical exercise, this instrument is the distance to a 4-year college. We assume that,

conditional on a set of controls, distance to college is independent of both information and

earnings and affects only the cutoff value (Card (1995), Carneiro et al. (2011), Nybom (2017),

Kapor (2020), Walters (2018), Mountjoy (2022)). We then trace how small changes in the

instrument change the conditional expectation of earnings. A small increase in the cost of

attendance pushes out those individuals whose new cost is higher than their beliefs. Using

the assumption of rational expectations, tracking these changes in the expected earnings

tells us about the beliefs of these marginal individuals who are responding to the small cost

change. Similarly, tracking how these changes affect the propensity of attending college

reveals the share of individuals with these beliefs.

Using our decomposition approach as outlined above, and estimated parameters of the
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Gaussian model, we find that differences in the information quality across the group con-

tributed to shrinking the choice gap. Specifically, the information channel shows that equat-

ing the information quality across groups would increase the choice gap by approximately

7.7% (around 97% of the original choice gap). The decomposition exercise also shows that

most of the current gap in choice is driven by differences in the returns distribution faced by

Hispanics and Whites. Specifically, we find that the potential returns for college for Whites

are much larger than those of Hispanics, and that these differences drive most of the choice

gap.

We focus in our analysis on the differences in the choice gap that are driven by differences

in the quality of information. This is not the only approach to measuring the effect of infor-

mation differences. In the Appendix, we introduce an additional decomposition approach,

where instead of equating the information quality across groups, we equate the information

structure. This decomposition approach, which builds on tools from the robust mechanism

(Bergemann et al. (2022), Bergemann and Morris (2016), Bergemann and Morris (2013))

literature, allows us to bound the full set of counterfactuals nonparametrically and enables

us to depart from the Gaussian distribution assumption.

In the second part of the paper we turn to ask how parity in choice can be achieved by

considering a policymaker that wants to close the gap by providing Hispanics with additional

new information. We postulate that this policymaker, acting as a statistician with access

to information on earnings for individuals who attend college and those who do not, could

provide an informative signal to each high school student about their potential income. We

then ask how accurate must this additional information be? Our findings suggest that to

effectively close the gap, this new information must be able to explain either 24% of the

variance in college earnings or 49% of the variance in non-college earnings. We explore the

feasibility of achieving this level of information accuracy using data available to schools. Our

administrative data is utilized to predict earnings 12 to 14 years after high school graduation

for both college attendees and non-attendees. We show that, at most, we can explain 10% of

the quarterly earnings variance. This suggests that closing the attendance gap through the

provision of information necessitates the development of more accurate sources for earnings

prediction.
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Related Literature. This paper contributes to an extensive body of literature on human

capital investment decisions, anchored by the foundational work of Ben-Porath (1967). Our

study intersects with research focused on the impact of monetary returns on such choices,

as explored in studies by Willis and Rosen (1979), Cunha and Heckman (2007b), Walters

(2018), Abdulkadiroğlu et al. (2020), and Freeman (1971). These papers typically make

assumptions about what information is used by individuals to beliefs about returns—often

measured based on observable factors—and analyze how these beliefs factor into decision-

making processes. Our approach differs from them by examining how differences in the

quality of information to individuals influence their choices and drive the gap across groups.

Focusing on the the quality of information and not the specific beliefs, or variables used in

the inference process.

Another significant aspect of our research aligns with studies that investigate the nature

of individuals’ beliefs, such as those by1 Manski (2004), Wiswall and Zafar (2015), Zafar

(2011), Wiswall and Zafar (2021), and Diaz-Serrano and Nilsson (2022). These works delve

into systemic differences and biases in beliefs among groups defined by socio-economic status.

Our paper extends this inquiry, utilizing these findings to illuminate not just the distribution

of beliefs but also the quality and extent of information available to these groups.

As discussed above, methodologically, our study builds upon the Marginal Treatment

Literature, particularly the work of Heckman and Vytlacil (2005). This approach has pre-

viously been employed to examine the marginal treatment effects on returns to schooling,

as demonstrated by Carneiro et al. (2011), Carneiro and Lee (2009) and Mountjoy (2022).

Similar to some of these studies, we link the marginal treatment effect to beliefs. Eisenhauer

et al. (2015) employed this structure to conduct a cost-benefit analysis of programs, focusing

on agents’ ex-post and ex-ante costs—closely paralleling our usage. Canay et al. (2020) and

d’Haultfoeuille and Maurel (2013), in the context of college decisions and discrimination,

demonstrate how the Roy model can identify ex-ante beliefs and preferences, aligning with

our methodological approach.

Our work related to recent research by Bohren et al. (2022) on systemic discrimination.

Their study, akin to ours, identifies two main sources of systemic differences between social

groups. The first, termed ’technological systemic discrimination’, aligns with our focus on

1See overview of the literature on beliefs elicitation in Giustinelli (2022)
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differences in return distributions and captures disparities across groups in certain outcome

variables. The second, ’informational discrimination’, pertains to disparities arising from

varied information available to decision-makers across groups. Our research differs in its

concentration not on discrimination towards individuals but on the decisions individuals

make about themselves and how these systemic forces shape it, with a specific focus on

the quality of information rather than its structure. We further explore a distinct measure

related to this in our Appendix.

While our primary focus is on educational decisions, our decomposition approach has

broader applications. It can illuminate how information asymmetries contribute to decision-

making disparities across various contexts. Recent studies, including those by Arnold et al.

(2018), Arnold et al. (2022), and Canay et al. (2020), have explored the influence of judi-

cial preferences and biases in decision-making. There is a growing interest in understanding

how decision-making signals contribute to these disparities. Our decomposition methodology

seeks to address these nuanced aspects of decision-making processes.

The remainder of the paper proceeds as follows. Section 2 describe our framework and

decomposition approach. Section 3 describe the data and some descriptive statistics. Section

4 describes some empirical patterns on earnings and information. Section 5 discuss the esti-

mation results. Section 6 discuss counterfactual effects of providing additional information

and section 7 concludes.

2 Framework

We consider a population of high school graduates, indexed by i. At the end of high school,

each graduate must decide whether or not to attend college. The objective of individual i is

to maximize earnings. Denote by Y i
1 earning for an individual i who attends college and by

Y i
0 their earnings if they do not attend. We assume that earnings are generated according
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to

Y i
1 = αi

1 + ui
1,

Y i
0 = αi

0 + ui
0,

where αi
d, d ∈ {0, 1}, is the structural component of earnings and ui

d is an unpredictable

component of earnings, satisfying E[ui
d|αi

1, α
i
0] = 0. Before deciding whether to attend

college, each student i observes an informative signals on the their individual structural

component of earnings. Specifically, we denote by Si ∈ S the vector of realized signals that

individual i observes and assume that S ⊥ ui
d|αi

1, α
i
0. Our model separates earnings into two

components. The first is a structural component, α1 and α0, which agents can know and

form beliefs about. The second component is ud, which is unknowable at the time of the

decision. These components of earnings include idiosyncratic shocks that can only be known

ex-post. Henceforth, αi
1 and αi

0 will be treated as earnings, and the index i will be omitted

for clarity when its presence is self-evident.

In our model, signals link outcomes to beliefs; thus, we need to determine how individuals

use signals to form beliefs. We adopt the standard approach in economics and model indi-

viduals as Bayesian agents. Being Bayesian implies that individuals observe signals, know

the correct likelihood function, and update their prior beliefs to form new posterior beliefs

over the outcomes. Let π(α1, α0,S) be the joint distribution of outcomes and signals. We

assume that this distribution is parameterized by a set of parameters, some of which are

perfectly known to the individuals, denoted by θk, while on others the individuals may have

priors over, denoted by θu. We denote by H(θu) and h(θu) the prior cumulative distribu-

tion function (CDF) and the corresponding probability density function (PDF) the set of

unknown parameters.

After observing the signal realization, S, individuals form beliefs on their returns, based

on their posterior beliefs H(θu|s) and information in the models. Specifically, denote by

R = α1 − α0 the structural part of the returns, by E [.|s] the individuals posterior beliefs,

which incorporates the model uncertainty, and E[.|s] the standard expectation operator then
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we have that the individuals posterior beliefs over their returns is given by

E(Y1 − Y0|S) =
∫

E[Y1 − Y0|S; θu, θk]dH(θu|S)

=

∫
E[α1 − α0|S; θu, θk]dH(θu|S),

where we used the fact that the unpredictable errors are independent from the signal and

have mean zero.

Finally, We assume that individuals incur some cost when attending college, that is a

function of observables. We denote by X observed variables, by c(x) the cost of attendance

and by then individual i’s decision rule is given by

D = 1 [E [Y1 − Y0|S] ≥ c(x)] = 1 [E [R|S] ≥ c(x)] .

Our decision rule suggests that individuals derive risk-neutral utility from earnings but al-

lows high school graduates to possess any utility function that strictly increases with expected

returns (Vytlacil (2006)). Modeling utility as an increasing function of returns includes also

the standard linear indirect utility function, that has been used in models of school and

education choices (Willis and Rosen (1979), Walters (2018), Abdulkadiroğlu et al. (2020)) In

our framework, we standardize this utility function to be the identity function. Therefore,

c(x) serves as a composite of individual preferences, known monetary and non-monetary

costs, and other barriers to college attendance, such as credit constraints, social norms, and

additional limitations.

It’s also important to keep in mind that although we model here the decision process as

a result of one individual’s choice, it is likely that the decision to go to college or not is made

in conjunction with other parties, such as parents, guardians, or advisors. In this case, the

observed signals are all the signals observed by all parties, and the cost is an agglomeration

of all members who participate in the decision.
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2.1 What information may high school students have on their re-

turns

It is worth considering what signals high school students observe prior to deciding about

college. Some signals are pieces of information that students receive throughout their lives.

For example, students may hear from various media sources about the potential returns to

college for different types of students, learn about their ability from test scores, or consult

with their parents or high school counselors about their prospects. The quality of this

information depends on how well it correlates with the individual’s unique characteristics

and the future labor market. For instance, educated parents may be better informed about

potential jobs for college graduates and their children’s unique skill sets. Consequently, they

might provide accurate information on post college earnings for college graduates based on

their familiarity with different career paths and their children’s suitability for these paths.

The above examples are instances of information that decision-makers may be exposed

to prior to making their choice. Another source of information may come from the way

the labor market itself operates. In section E.1, we discuss in detail two simple examples,

demonstrative the richness of information used in the decision process. The first example

considers the case where individuals have perfect knowledge of a structural component to

wages. For instance, individuals are likely to know their ability. Ability plays a role in

determining the potential earnings, but in our model, knowing your own ability is also a

piece of information in and of itself. Accordingly, some components in the economy hold two

simultaneous roles. First, they affect the actual returns of the individual; separately, they

are also used as a signal about earnings.

The second example considers the case where two individuals may observe the same

signal realization, but how informative these signals are may differ due to the labor market

structure. In this example, we consider two groups that can go to college and become either

lawyers or accountants. Each group member observes a signal on whether they will be a

high-earning lawyer or a low-earning lawyer. The two groups differ in the share of people

who end up becoming lawyers after college. This difference in the labor market for the two

groups implies that the same signal may carry different information on returns, which is the

thing the decision makers care about.
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These examples illustrate the complex and multifaceted nature of information available

to high school students as they contemplate their educational futures. The signals they

receive come from a variety of sources, each with its own level of reliability and relevance.

This also motivates our approach to decomposition, which focuses not on specific pieces of

information, but rather on the overall information quality, which is a crucial element in the

choice gap.

2.2 Gaussian Model

In this section, we restrict the general model we presented above and impose a Gaussian

structure. This has two main advantages. First, imposing a Gaussian structure on the

signals implies that we can rank information based on the Blackwell Ordering. In general,

the Blackwell order (Blackwell (1953)) is a partial order on information structures, where

one information structure is said to be Blackwell more informative than another if it leads

to better decision-making outcomes for every decision problem. In the Gaussian case, there

is a total order over information. Therefore, imposing the Gaussian structure implies that

we can meaningfully say that one group has better information than the other (Chan et al.

(2022)). The second advantage is that the Gaussian distribution is fully determined by the

first and second moments. This implies that we can fully characterize the beliefs distribution

and counterfactual distribution we need for analysis ahead by the mean and our measure of

information quality, which we discuss below.

We assume that the signals, S, and the structural components of earnings, α1 and α0,

are jointly distributed as Gaussian. We denote by µ1, µ0, σ1, σ0, and ρ the means, standard

deviations, and the correlation between α1 and α0, respectively. We further assume that in-

dividuals have ”partial rational expectations,”, where they know the parameters that govern

the marginal distribution of α1 and α0, and the correlation between signals and potential

earnings. On the other hand we take the more realistic approach that high school students

do not know the correlation parameter, ρ, between α1 and α0. We denote the individuals

prior over ρ, by H(ρ), with expected value given by µρ.

This modeling captures the notion that agents, similar to econometricians, may know

how signals are linked to the marginal distribution of earnings, but cannot learn from data
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and observation on the correlation between potential outcomes. Specifically, in our model

the signal realization S, does not provide any information on the correlation structure.2

The fact that individuals can not learn about correlation from observation also implies

also that individuals beliefs on returns are aligned with the true conditional expectations on

returns, in the sense that3.

E [α1 − α0|S] = E [α1 − α0|S]

This implies that the beliefs on the the expected returns are correct, notice that the beliefs on

higher moments of the conditional returns distribution may differ from the true underlying

distribution of returns.

Next we derive the distribution of beliefs and the share of high school students who opt

into college. Given that potential earnings and signals are jointly Gaussian, it follows that

returns and signals are also jointly Gaussian distributed:[
S

R

]
|x ∼ N

([
µS,x

µR,x

]
,

(
ΣS,x ΣS,R,x

ΣS,R,x σ2
R,x

))
.

Where σ2
R,x = σ2

1 + σ2
0 − 2ρσ1σ0 denote the variance of returns, ΣS,x denotes the covariance

2To see this, notice that

π(ρ|S) = π(S|ρ)h(ρ)
π(S)

=

∫
π(S, α1, α0|ρ)dα1α0h(ρ)

π(S)
=

π(S)h(ρ)

π(S)
= h(ρ)

where the second equality is simply the law of total probability and the third equality stems from the fact
that for each ρ, the marginal of π with respect to s is always the same

3To see this, notice that

E [α1|S] =
∫
ρ

∫
α1

α1π(α1|ρ,S)dα1dH(ρ|S)

=

∫
ρ

∫
α1

α1
π(α1,S|ρ)
p(S|ρ)

dα1dH(ρ|S)

=

∫
ρ

∫
α1

α1
π(α1,S)

p(S)
dα1dH(ρ|S)

= E[α1|S]

where we used the fact the marginal of π for any value of ρ is the same and that S ⊥⊥ ρ. We can similarly
show that E [α0|S] = E[α0|S], which implies the desired result
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matrix of the signals, ΣS,R,x is the covariance between signals and returns, and µS,x and

µR,x are the mean values of signals and returns, respectively. We let all variables to be

conditional on x. As signals and returns are jointly Gaussian, individuals who observe the

signals realization S form the following posterior beliefs on their returns:

E[R|S, x] = µR,x + ΣT
S,R,xΣ

−1
S,x(S − µS,x). (1)

We now can write explicitly the decision rule for an individual with cost c(x) and signal

realization S in our Gaussian model as:

D = 1 [E[R|S, x] ≥ c(x)] = 1
[
µR,x + ΣT

S,R,xΣ
−1
S,x(S − µS,x) ≥ c(x)

]
.

Owing to the linearity of the joint Gaussian distribution, we can derive the proportion of

students who opt to attend college. To do so, we first notice that the share of individuals

who would opt to go to college depends on the share of individuals whose prediction of the

returns is higher than the cost. We therefore first derive the distribution of beliefs in the

population from the posterior beliefs in equation 1.

E[R|S, x] ∼ N
(
µR,x,Σ

T
S,R,xΣ

−1
S,xΣS,R,x

)
,

where we used the linearity of the posterior beliefs. By knowing how beliefs are distributed

in the population, we easily derive the share of individuals with cost c(x), who would go to

college:

P (D = 1|c(x)) = Φ

 µR,x − c(x)√
ΣT

S,R,xΣ
−1
S,xΣS,R,x

 ,

where Φ denotes the standard normal CDF. Henceforth, we will omit x in our discussion,

except in cases where it contributes significantly to the analysis.

2.3 Information Quality

In our framework, individual choice is influenced by two factors: the net returns R−c(x) and

the individuals’ ability to predict these returns. Our analysis seeks to understand how these
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elements impact decision-making across different social groups. To do so, we need to define

formally how we can measure the individuals’ prediction ability. In this section, we define

a measure of information quality that captures the prediction quality of the individuals.

Specifically, we quantify the quality of information individuals have by the coefficient of

determination, often denoted by R2 (R-Squared). This metric measures the proportion of

the variance in returns that can be explained by their signals, relative to the total variance

in returns, from the high school perspective.

R2 =
Var(E[R|S])
Vartotal(R)

.

The total variance of returns, Vartotal(R), is influenced by two sources of uncertainty. The

first is individual uncertainty regarding their specific returns, as discussed above. The second

source of uncertainty is model uncertainty, stemming from the fact that individuals can not

know ρ.

We can also derive an explicit expression for the total variance of returns as follows:

Vartotal(R) = Vartotal(α1 − α0) = E[Var(α1 − α0|ρ)] + Var(E[α1 − α0|ρ])

= σ2
1 + σ2

0 − 2σ1σ0µρ,

where the first equality follows from the law of total variance. Using this expression we have

that information quality is given by

R2 =
Var(E[R|s])

σ2
1 + σ2

0 − 2σ1σ0µρ

(2)

This R2 differs from the standard coefficient of determination, as it accounts for both funda-

mental uncertainty and subjective uncertainty over the underlying data generating process.

Similar to the standard R2, this measure ranges from 0, implying that the information avail-

able does not reduce any uncertainty, to 1, implying that the information and the way it’s
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correlated with the potential earnings resolves all objective and subjective uncertainties.4

As we discuss further in Section 2.5, the prior distribution H(ρ) is not directly identifiable

from the data. This means that we cannot determine the exact shape or parameters of the

distribution solely by observing the data. However, we can partially identify the support

of H(ρ), taking into account the restrictions implied by the covariance matrix between

the signals and the potential earnings. This partial identification allows us to make more

informed guesses about the possible distribution H, even if we do not know the precise

distribution.

In our main analysis, we impose the assumption that µρ = 0, implying that individuals

hold a symmetric prior over the full set of ρs, [−1, 1]. Under this assumption, the ex-ante

uncertainty in returns is determined by the variance in the marginal distribution, as captured

by σ2
1 and σ2

0.

One motivation for this assumption is the concept of equi-ignorance. If the individuals

lack any information about the correlation of potential outcomes, similar to econometricians,

they would assign equal weight to each correlation value, implying a uniform prior over

the possible data-generating processes, this would result in a uniform distribution, centered

around 0. Another motivation comes from ex-post inference. If individuals have a degenerate

prior distribution with ρ = 0, observing one realization of the potential outcomes would not

enable them to infer the other. This is akin to econometricians who cannot use observed

realized outcomes to infer the value of the unobserved ones.

How does the quality of information and returns affect the decision on going to college?

Our measure for information quality implies that higher quality of information implies higher

dispersion of beliefs among individuals. Intuitively, if individuals have access to better qual-

ity, more accurate, information, then they would respond to it more, and rely on it more when

updating their beliefs, instead of relying on the mean returns. Therefore, better information

would result in an increasing belief dispersion. Whether higher beliefs dispersion implies that

more individuals would attend college is contingent upon the relationship between the cost of

4To see that the R2 in equation 2 is always less or equal than 1, note that the set of feasible ρs must satisfy
at least Var[α1−α0|s] ≤ σ2

1 +σ2
0 −2σ1σ0ρ, as explained in more detail in 2.6. Therefore, as the denominator

integrates over the set of ρs such that the variance of returns is higher than the variance of beliefs, the value
of the R2 is always less than 1. Further, the value 1 is achieved in the case where Var(R|s) = σ2

1+σ2
0+2σ1σ0.

This occurs when there is only one possible ρ feasible, ρ = −1, and agents have full information.
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attendance and the mean returns in the population, µR. Figure 1 illustrates the interaction

between the mean returns, µR, information quality, and cost and how they affect choices.

The black line represents the cost. The two red lines represent the survival functions for

priors lower than the cost, while the two blue lines represent the survival functions for priors

higher than the cost. Dashed lines indicate the posterior beliefs distribution for an agent

with high-quality information, and solid lines represent the posterior mean distribution with

low-quality information. The figure shows that if the cost is lower than µR, increasing the

precision of the signal—or enhancing information quality—would reduce college attendance.

Conversely, if the mean returns exceed the cost, a reduction in information quality could

prove actually increase the share of individuals who opt in to college.

Furthermore, examining the cross-derivative of the share of people who go to college with

respect to the difference between the prior mean and the cost shows that when µR − c ≤ 0,

widening the negative difference increases the effect of better information.

∂2Φ

(
µR−c√

Var(E[R|S])

)
∂
√
Var(E[R|S])∂(µR − c)

= − 1

Var(E[R|S])

[
−ϕ

(
µR − c√

Var(E[R|S])

)
µR − c√

Var(E[R|S])
+ ϕ

(
µR − c√

Var(E[R|S])

)]
,

where we can see that the terms inside the bracket are positive in the case where µR− c ≤ 0.

In the case where µR−c > 0, the term in the brackets can be either negative or positive, but

tends to be negative as µR−c → ∞. Therefore, we can see that providing better information

in the case where µR− c < 0, would have a stronger effect if the difference between the prior

mean and the cost is larger. It is worth noting also that we can flip the perspective and

notice that the effect of increasing the difference between µR and c —by raising the cost or

altering the average returns—would be more significant if beliefs are more dispersed.

2.4 Decomposing the Choice Gap

To quantify the role of information in exploring the gap, we suggest using a decomposition

method à la Kitagawa (1955), Blinder (1973), and Oaxaca (1973). In it, we decompose the

differences in choices into two components, stemming from the differences in information

quality and differences and differences in the returns distribution themselves between two

groups. Specifically, we investigate what proportion of individuals would choose to attend
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Figure 1: Cost, information and Beliefs interaction

Note: This figure illustrates how the interaction between the prior, information quality, cost affect
choices. The black line represents the cost. The two red lines represent the survival functions for
priors lower than the cost, while the two blue lines represent the survival functions for priors higher
than the cost. Dashed lines indicate the posterior beliefs distribution for an agent with high-quality
information, and solid lines represent the posterior mean distribution with low-quality information.
The figure demonstrates that if the priors are higher than the cost, providing additional information
reduces the share of participants from 98% to 0.84%. Conversely, if the prior is lower than the cost,
improving the quality of information increases the share of individuals who opt in.

college if individuals from different groups, with the same observables, had access to the

same quality of information.

Before introducing our decomposition, we define some notation. Let R2
g be the quality

of information of group g. Let µg
ρ denote the mean beliefs on ρ for group g, and similarly,

we denote the group components of the returns distribution of group g as µg, σ1,g, and σ0,g.

Finally, let Varg,g′(E[R|S]) be the counterfactual variance of beliefs for group members g,

with the information quality of group g′ and the earning distribution of group g.

Varg,g′(E[R|S]) = R2
g′ × (σ2

1,g + σ2
0,g − 2σ1,gσ0,gµ

g
ρ).

This expression captures the beliefs variance if group g had the same quality of information

as group g′, but faced the an unchanged returns distribution. We then suggest to decompose
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the choice gap between group a and b as follows:

P (D = 1|Group b)− P (D = 1|Group a) =∫
X

Φ

(
µR,b,x − cb(x)√
Varb,b(E[R|S, x])

)
dFb(x)−

∫
X

Φ

(
µR,b,x − cb(x)√
Varb,a(E[R|S, x])

)
dFb(x)︸ ︷︷ ︸

Information Channel

+

∫
X

Φ

(
µR,b,x − cb(x)√
Varb,a(E[R|S, x])

)
dFb(x)−

∫
X

Φ

(
µR,a,x − ca(x)√
Vara,a(E[R|S, x])

)
dFa(x)︸ ︷︷ ︸

Returns Channel

(3)

Where we denote the CDF of X for group g by Fg(x). In our decomposition, the information

channel quantifies the extent to which the gap in choices arises from individuals of different

groups having access to different qualities of information. These differences may increase or

decrease the gap, depending on the relation between the mean returns and costs and the

quality of information each group has, as discussed above.

How can we equate predictive ability across two groups? It’s instructive to consider

cases where members of groups a and b use different models to predict the outcomes of their

choices. These models may differ in their set of explanatory variables; one group might use a

larger set of variables to explain outcomes, while the other may have a smaller set, potentially

resulting in poorer model performance. In our setting, the exact set of variables used is less

crucial, as these variables only affect choices through the information they contain about

outcomes.

In our decomposition exercise, we focus on equating the quality of prediction across

groups, which doesn’t necessarily mean equalizing the signals they observe. As discussed in

section 2.1, such an approach may be impractical. Instead, we can conceptualize this as a

counterfactual world where we either provide more variables to the group with the smaller

set or remove some explanatory variables from the group with better information. Since the

exact nature of these variables is unimportant for the decision rule, we disregard them and

focus solely on the quality of information.

It is important to recognize that our analysis is a partial equilibrium exercise, where

we use comparative statics to equalize the information quality between the two groups.
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Typically, information quality is determined endogenously within an equilibrium framework

(Coate and Loury (1993), Lundberg and Startz (1983)), and is driven by choices individuals

make that form the information environment and what agents can know. Furthermore, the

information quality that individuals possess could be influenced by the effort they invest

in acquiring it, a concept central to the standard rational inattention model (Caplin et al.

(2022); Maćkowiak et al. (2023)). In this decomposition exercise, we do not explore the

underlying factors that drive these information discrepancies; rather, we take them as given

and investigate the extent of their contribution to the observed disparity.

Finally, we do recognize that our counterfactual choices shares relies on the the second mo-

ment of both returns and beliefs. In more general settings, with unrestricted data-generating

processes, with more nuisance information structure, equalizing R2 does not yield a unique

counterfactual. In many cases, different joint distributions of signals and outcomes may

produce the same R2 but induce complex choice patterns that contribute to gaps in choices

influenced by information. In section E in the Appendix, we discuss another decomposition

approach that equalizes the information structure across groups. This approach does not

equalize the ability to predict across groups, but rather equalizes the signals that individuals

with similar outcomes receive.

We now examine the second channel, which we call the returns channel. This residual

component addresses the inverse question: By how much would the share of high school

graduates from group a change if we maintained their information quality at R2
a, but adjusted

their returns and costs to match those of group b? This component reveals the extent to which

the gap is driven by differences in the outcome distribution itself, rather than information

quality. Consequently, we interpret this component as quantifying the portion of the gap

attributable to the underlying labor market fundamentals that drive differences in choice.

The two components of the distribution carry distinct policy implications. If the ma-

jority of the gap is driven by differences in predictive ability and information, policymakers

aiming to close the choice gap should consider providing additional information to group b.

This can be done by either ”transferring” the superior information from group b to group

a or providing additional new information to group a members. This could involve educa-

tional interventions, information dissemination, or providing improved prediction tools for

group a. Conversely, if the gap primarily stems from variations in the outcome distribu-
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tion, policymakers concerned with narrowing the disparity in choice should focus on policies

that directly influence this distribution. This could include measures such as altering tax

structures, providing targeted subsidies, or implementing regulatory changes that affect the

underlying returns and costs for both groups. Identifying the primary driver of the gap not

only enhances our understanding of its structural roots but also provides actionable insights

for policymakers committed to fostering equal opportunities across different groups.

2.5 Model Identification and Empirical Specification

This section outlines the key components required for our decomposition exercise. While

Appendix C.2 provides a comprehensive nonparametric identification argument based on

Marginal Treatment Effect (Heckman and Vytlacil (2005)) and the discrete choice model

identification (Matzkin (1992),Matzkin (1993)) literature, here we focus on the essential as-

sumptions we need and demonstrate the identification argument using our simplified Gaus-

sian model.

Our identification hinges on three sets of assumptions. The first set of assumptions

pertains to the validity of an instrumental variable. The second set of assumptions regards

the heterogeneity of the individuals, and the last set of assumptions focuses on the utility

function and the usage of partial rational expectations.

The assumptions needed for our instrumental variable are the standard instrumental

variable assumptions (Angrist and Imbens (1995), Vytlacil (2002), Heckman and Vytlacil

(2005)). As we detailed in section C.2, we require that the instrument satisfy the exclusion

and relevance assumptions. In terms of our models, these assumptions imply that our instru-

ment Z is used as a cost shifter that shifts c(Z,X) (relevance) and satisfies the exogeneity

requirement, α1, α0 ⊥⊥ Z|X and S ⊥⊥ Z|α1, α0, X.5 The first independence condition requires

that a shift in the instrument, conditional on observables, does not change the distribution of

potential outcomes. The second condition implies that, conditional on the set of covariates

and the individual potential earnings, the instrument is independent of the signals individu-

als observe. In other words, we require that two individuals with the same observables, X,

5Combining these two assumptions also gives us the classic monotonicity assumption in Angrist and
Imbens (1995)
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and the same potential earnings should draw signals from the same distribution.

As we detail in the next section, in our empirical analysis we use the distance from the

student high school to the nearest 4 years college as our instrument. Distance to college has

been first used by Card (1995) to estimate college returns and was then used extensively

as in instrument to study various outcomes of schooling (e.g Carneiro et al. (2011), Ny-

bom (2017), Kapor (2020), Walters (2018), Mountjoy (2022), Kling (2001),Kane and Rouse

(1995),Cameron and Taber (2004)). The main idea behind this instrument is that distance

to college should affect the psychic and monetary costs of attending college, but should not

be correlated with labor market outcomes. The exogeneity of distance instruments has been

assessed in Cameron and Taber (2004) and Mountjoy (2022). These studies highlight the im-

portance of accounting for demographics, family background, and region of residence, factors

we include in our analysis. In addition, we also provide suggestive evidence in section 4 sup-

porting this assumption by showing that distance to college and high school test scores are

uncorrelated, conditional on a set of controls for individual, high school, and neighborhood

characteristics.

The exogeneity assumption does not only require that the instrument be independent

from the potential earnings but also independent from the information high school students

observe, conditional on the set of covariates and the potential earnings. Although this

assumption is not typically discussed in the economics of education literature, it is implicitly

required for the validity of the instrument. This assumption is more challenging to assess

and requires us to believe that two individuals who differ only in their distance from college,

but share all other observables and potential earnings, are drawing signals from the same

distribution. The fact that we need the instrument to be independent from the instrument,

conditional on the potential earnings, may seem reasonable if we consider that the type of

information individuals observe is a function of their ability and ability is fully captured

by the potential earnings of the individuals. On the other hand, this assumption may not

hold if, for example, we believe that universities have outreach programs explicitly based on

the distance from the college, or that information is correlated with distance from college

through neighborhood components not captured in our neighborhood controls.

In addition to the requirement that the instrument satisfy the exogeneity and relevance

assumptions, we also requires from our instrument to have enough variation to be able to
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identify the entire beliefs distribution, conditional on our set of controls. This assumption

is hard to satisfy in reality and is not satisfied in our data. The variations in distance are

not large enough to assure us that we can identify the entire beliefs distribution for each

X. In practice, we relax this assumption and follow other papers (Carneiro et al. (2011),

Carneiro and Lee (2009), Brave and Walstrum (2014), Heckman and Vytlacil (2005)) that

estimate marginal treatment effects and assume that the set of covariates only operates as a

mean shifter, shifting the mean of α1 and α0. We make this additional assumption explicit

in section 2.5.1.

The next set of assumptions we need for identification focuses on the heterogeneity in the

cost function and beliefs. As discussed at the beginning of section 2, conditional on the set of

observables, all of our heterogeneity in choice stems from differences in the signals individuals

obtain. Therefore, we assume that all heterogeneity in the cost function is observable. This

assumption allows us to separate beliefs and costs in order to perform our decomposition

analysis. In general, without this assumption, separating beliefs and preferences/costs from

choice data is not feasible Manski (2004). To do so requires additional data directly on

either beliefs, obtained from belief elicitation, or preferences, which can be measured by

elaborate surveys that separate beliefs and preferences Adams-Prassl and Andrew (2019)6.

Our decomposition analysis relies on observing both beliefs about the long-term outcomes

and the realization of long-term outcomes. The requirement to observe long-term outcomes

makes it difficult to obtain beliefs and realization. Therefore, we opt here to rely on the

restricted heterogeneity assumption discussed here. In general, if one has access to data

on beliefs they can incorporate it, as discussed in section E.2.3, and allow them to better

separate the cost and beliefs, at the cost of imposing another assumption.

The final key assumption our identification argument builds upon is the assumption we

impose on individuals’ utility and decision rule, and how they utilize the information they

have. Specifically, we impose that the utility functions of individuals are strictly increasing

in the expected returns and that individuals have partial rational expectations, as discussed

in section 2.2.

First, we impose that individuals have partial rational expectations to be able to measure

6We discuss briefly what additional assumptions can be used to estimate cost heterogeneity if one has
access to belief elicitation data in section E.2.3 in the Appendix.
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the expectations for measured conditional expectations in the data, as we discuss below. Two

things are important to keep in mind. First, imposing rational expectations implies that

individuals’ beliefs are not systematically detached from the underlying economy and that

their beliefs correspond systematically to the underlying economy. We may want to relax

this assumption, but then we would need to be precise on how beliefs are behaving in the

counterfactual world where we change the underlying returns distribution, as we do in our

decomposition. We also need to decide on how we measure the quality of information in this

setup, and take a stance on whether this relies on incorrect beliefs or the beliefs these people

would hold if they update their beliefs correctly given their available information. Therefore,

relaxing the rational expectation assumptions introduces a set of decisions without a clear

guideline on how to make them. We leave exploration of this to future research. Second,

it’s important to emphasize that for our analysis, we do not need individuals’ beliefs to

be correct, but we need to assume that individuals with higher expected returns also have

higher beliefs. If individuals have wrong beliefs, but maintain order, such that individuals

with higher beliefs do have higher returns, then then these biases are absorbed in the cost

component, c, as we demonstrate below.

Next, we impose the assumption that utility of individuals is increasing in the expected

returns, which allows us to pin down the belief distribution in the population by using the

law of iterated expectations and the Marginal Treatment Effect curve. Specifically, consider

a more general setup that allows for arbitrary utility functions. Let u(E[Y1−Y0]) be a utility

function. u can be a function of preferences, but can also include biases as discussed above.

We assume that individuals opt in if u(E[Y1 − Y0]) ≥ 0. If u is strictly increasing, then we

have an equivalent decision rule in which u(E[Y1 − Y0]) ≥ 0 ⇐⇒ u−1(u(E[Y1 − Y0])) ≥
u−1(0) ⇐⇒ E[Y1 − Y0] ≥ c. Now, using our instrument, we can identify the marginal

treatment effect curve that maps the expected returns to each quantile of the selection

variable. Specifically, denote by F the CDF of beliefs, E[R|S], and by V the random variable

that corresponds to the quantile of E[R|S]. Then we can obtain, using our instrument, the

Marginal Treatment Effect curve, E[R|V = v]. Using the law of iterated expectation, we

also have:

E [R|V = v] = E
[
R|F−1(V ) = F−1(v)

]
= E

[
R|E[R|s] = F−1(v)

]
= F−1(v)

22



This allows us to pin down the beliefs distribution F . If individuals’ preferences are not

strictly increasing in the returns, then the quantiles of the selection variables do not nec-

essarily correspond to a unique set of beliefs, which prevents us from using the argument

above.

In what follows we briefly go over the identification of the simpler Gaussian model, and

it’s important components for our analysis. Discussion on estimation is in Appendix D.

2.5.1 Identifying the Gaussian Model Parameters

We assume we observe a set of covariates X, a continuous instrument Z and outcomes Y .

Although it’s not imperative for identification argument, we parametrize the cost function

as a linear function of covariates

c(x, z) = zbz + xbx.

We assume that the distribution of α1|X,D = 1 and α0|D = 1, X is observed. In the

Appendix we discuss how it can be identified using panel data and additional assumptions on

the wages. For our discussion α1 and α0 can be thought of as fixed effects, and are identified

using panel data on earnings. We also assume that α1 and α0 are linear in covariates

α1 = Xβ1 + U1,

α0 = Xβ0 + U0.

Following our discussion on the Gaussian model, we assume that beliefs and residuals U1

and U0 are jointly normal, X operates only as a mean shifter and Z is independent from the

potential outcomes, and Z,X ⊥⊥ U1, U0 and information S ⊥⊥ Z,X|U1, U0 U1

U0

E[R|S, x]

 ∼ N


 0

0

X(β1 − β0)

 ,

 σ2
1 ρσ1σ0 σ1,E

ρσ1σ0 σ2
0 σ0,E

σ1,E σ0,E σ2
E


 .
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where σE is the standard deviation of beliefs, and σd,E is the covariance between beliefs and

potential earnings Ud. The decision rule is then given by

D = 1 [E[α1 − α0 | S, x] ≥ c(z, x)] = 1 [E[U1 − U0 | S, x] ≥ c(x, z)− x(β1 − β0)] .

Using the fact that beliefs and U1 and U0 are jointly normal, we have that the choice prob-

ability is given by

P (D = 1|x, z) = Φ

(
x(β1 − β0)− zbz − xbx

σE

)
. (4)

Notice that in general this is not enough to identify the cost function of parameters, as all

parameters are identified up to scale. In addition, covariates can play a dual role, both

affecting the outcome variable and controlling the cost. Therefore, we need to identify the

scale parameter and the coefficients β1 and β0. To identify β1 we use the standard Heckman

Correction argument for Gaussian selection model (Heckman (1979)). Specifically, using the

fact that U1, U0 and beliefs are jointly Gaussian, we have that

E[α1|D = 1, X] = E[α1 + U1] = E[α1 + U1] = Xβ1 + E[U1|D = 1, X],

where E[U1|D = 1, X] =
σ1,E

σE

ϕ(Φ−1(1−P (D=1|x,z)))
1−Φ(Φ−1(1−P (D=1|x,z))) . We can follow the same argument to

identify β0, and using the fact that E[α0|D = 0, X] =
σ0,E

σE
× −ϕ(Φ−1(1−P (D=1|x,z)))

Φ(Φ−1(1−P (D=1|x,z))) . Denote

the coefficient of the inverse mills ratio as γ1 =
σ1,E

σE
and γ0 =

σ0,E

σE
, and notice that we can

identify σ1 and σ0 using the joint distribution of choice and earnings

f(D = 1, α1, z, x) =

1− Φ

Φ−1 (1− P (D = 1|x, z))− γ1
σ2
1
(α1−xβ1

σ1
)√

(1− ( γ1
σ1
)2))

ϕ

(
α1 − xβ1

σ1

)
1

σ1

.

(5)

and similarly for σ0. Finally, in order to get σE, we can use two facts. First, notice that that

the covariance of beliefs and returns equal to the variance of returns, Cov(U1 − U0,E[U1 −
U0|S, x]) = Var(E[U1 − U0|S, x]). To see that notice that we can decompose returns as

U1 − U0 = E[U1 − U0|S, x] + r,
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where r is the residual from projecting U1−U0 on S, X, and satisfies Cov(E[R|S, x], r) = 0.

Second, we have that Cov(U1−U0, E[R|S, x]) = Cov(U1, E[R|S, x])−Cov(U0, E[R|S, x]) =
σ1,E − σ0,E. Combining these two facts we have from the two coefficients on the control

function in the potential earnings regression

γ1 − γ0 =
σ1,E − σ0,E

σE

=
σ2
E

σE

= σE.

which concludes the identification argument for all the component we need for our decom-

position.

2.6 What can be learned on the prior beliefs on the correlation ρ

The data we use in our empirical application and the restrictions the choice model outlined

above implies, do not allow us to identify the prior distribution individuals have over the

correlation parameter ρ. In this section, we discuss what can be learned on the prior beliefs

given our model and data. Our main results here shows that given our identification results

above, we can bound the set of feasible ρs, from the individuals’ perspective. To show this,

we first start by showing how the variance of beliefs introduces some restrictions on the set

of feasible ρs. We then continue to show how we can identify the set of feasible ρs under

an additional assumption on the quality of information individuals have on the marginal

distribution. Finally, we demonstrate how we can bound on the quality of information

parameter in equation 2.

2.6.1 Restrictions on the Correlation Parameter

Our theoretical framework implies some constraints on the correlation between U1 and U0,

that is informed by our model that implies some selection on returns. First, as it well known,

the variance of beliefs about returns is bounded from above by the actual variance of returns

(e.g Gentzkow and Kamenica (2016)), which implies that the following inequality must hold:

Var(E[R|s] ≤ σ2
1 + σ2

0 − 2ρσ1σ0.
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This restriction is a generalization of the known fact in the standard Roy model (Roy

(1951)) with complete outcome information, where the joint distribution of potential out-

comes is point-identified (Heckman and Robb (1985)). If we assume agents have complete

information, the inequality holds with equality and we can identify the joint distribution of

potential earnings. If we maintain that agents select based on outcomes but have incomplete

information, we can use the above inequality to bound the correlation between potential

outcomes.

We can further restrict the bounds using the fact that we can identify the covariance

between beliefs, E[α1 −α0|s, x] and U1 and U0. To do so we use the fact that the covariance

matrix must remain positive semi-definite, we therefore restrict the set of possible ρ to values

that keep the following covariance matrix positive semi-definite,

Cov(α,E) =

 σ2
1 ρσ1σ0 σ1,E

ρσ1σ0 σ2
0 σ0,E

σ1,E σ0,E σ2
E

 .

2.6.2 Identifying the Set of Feasible ρs from the High School Students’ Per-

spective

Our measure of information quality depends on the set of feasible values of ρ taken from

the perspective of high school graduates. One way to identify this set is to assume that the

set of feasible correlations obtained using our bounding method above is the same as the

set of feasible ρs from the high school students’ perspective. This would be the case if, for

example, high school graduates observe only a scalar signal, such that their beliefs are an

injective function of their signal. This assumption might be very restrictive, and in general,

individuals are likely to have access to various sources of information and observe multiple

signals. Without additional assumptions, our model is not restrictive enough to pin down

the set of feasible ρs a high school student may consider, as the correlation between the

signals and potential earnings can induce additional restrictions on ρ that are not captured

by the argument above. To overcome this, we first show that with an additional assumption

on the quality of information individuals have on the marginal U1, we can identify the set of

feasible ρs from the high school graduates’ perspective.
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We start by defining what is the set of feasible ρs from the high school student perspective.

We then define the set of feasible set of ρs from the the econometrician’s perspective, under

an additional assumption on the quality of information on the marginals. Let S be a vector

of signals high school students have. The set of feasible ρs is the set of ρs that keep the

covariance matrix of S, U1, U0 positive semi-definite (PSD). We say that a ρ is feasible from

the perspective of high school graduates if the covariance matrix between S, U1, U0, where

the correlation between U1 and U0 is ρ, is also PSD.

Next, we consider what may be potentially known to the econometrician. Denote by R2
1

the quality of information high school students have on U1, i.e., R
2
1 =

Var(E[U1|S])
Var(U1)

. The next

lemma shows that the covariance matrix between U1, U0, E[U1|s], and E[U0|s] is identified,
up to ρ, for a given R2

1.

Lemma 1. Assume R2
1 is known, then all components of the covariance matrix between U1,

U0, E[U1|S], and E[U0|S] are identified up to ρ.

The proof is in Appendix C.1 and builds on the identification results of the model, as

discussed above, and the fact that the conditional expectation E[Ud|S] in the Gaussian model

is linear. Finally, we then say that ρ is feasible from the econometrician’s perspective, for a

given value of R2
1 the implied covariance matrix between U1, U0, E[U1|s], and E[U0|s] is PSD.

The following proposition shows that if ρ is feasible from the econometrician’s perspective,

with the assumption onR2
d, then it is also feasible from the high school graduates’ perspective.

Proposition 1. Fix R2
1. A ρ is feasible from the high school graduate perspective if and

only if it is feasible from the econometrician’s perspective.

The proof is in section C.1 in the Appendix, and builds on the linearity and of the normal

conditional expectation and properties of PSD matrices. Proposition 1 demonstrates that,

given an assumption on the quality of information individuals have on one of the marginals,

we can identify the set of feasible ρs from the high school graduate perspective. Furthermore,

we also note that the set of feasible ρ is a closed interval.7 Therefore, we can describe the set

7To see that, remember that covariance matrix

C =

 ΣS ΣS,1 ΣS,0

ΣT
S,1 σ2

1 ρσ1σ0

ΣT
S,0 ρσ1σ0 σ2

0
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by its boundaries ρmin and ρmax. Finally, Proposition 1 shows that we can identify the set

of feasible ρs, from the presepective of high schools studnets, under an assumption on the

quality of information they hold on the U1, R
2
1. Since we do not know the R2

1, in the results

section, when we use the support to inform our choice of prior of ρ, we construct bounds on

the information quality, R2, from equation 2, by exploring all values of R2
1 ∈ [0, 1].

3 Data

Our empirical application investigates the factors contributing to the college attendance gap

between Hispanic and White students. We concentrate on Texas, where there are large and

comparable Hispanic and White populations, but they differ substantially in their choices.

Utilizing the methods described in Sections 2.4, we decompose the attendance choices and

assess the influence of informational differences. We start by describing the data and then

discuss the model results. The following section describes the data and variables we use

throughout our analysis

3.1 Data Sources and Sample Construction

Our empirical study leverages a series of confidential administrative databases from the state

of Texas, the second most populous in the U.S. with a sophisticated higher education system

that engages a substantial portion of its populace, including over one million high school

students (Agency (2023)). Additionally, Texas have a significant Hispanic demographic,

is positive semi-definite (PSD) if and only if ΣS is PSD and the Schur complement of ΣS in C is also PSD.
ΣS is PSD by construction. The Schur complement, denoted as SC, is given by

SC =

(
σ2
1 ρσ1σ0

ρσ1σ0 σ2
0

)
−
[
ΣT

S,1 ΣT
S,0

]
Σ−1

S

[
ΣS,1

ΣS,0

]
.

The SC is PSD, if uTSCu ≥ 0 for any vector u. We can demonstrate that this holds if k2x
2+(k1−ρ)x+k0 ≥ 0,

where k0, k1, and k2 are constants determined by the SC elements and x = u1

u0
. To ensure that this

expression is always positive, we can use the quadratic formula and require that (k1 − ρ)2 − 4k2k0 ≤ 0. This
expression is a convex parabola in ρ, that intersects with the constant 4k2k0 at at most two intersection
points. Any ρ between these two intersection points satisfies the requirement and maintain that matrix C is
PSD. Consequently, it is sufficient to describe the set of feasible ρ values by these two boundary points. If
the parabola does not intersect with 4k2k1 then there is no ρ that keep the matrix C PSD.
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comprising around 12 million individuals in 2022, or about 40% of the state’s total popula-

tion, matched by a 40% representation of White population.

The study combines data from several Texas agencies. The primary dataset is procured

from the Texas Education Agency (TEA), offering demographic details of all Texan high

school students. This dataset is enriched with school characteristics from the National Center

for Education Statistics (NCES), which provides a broader picture of Texas high schools.

We incorporate assessments from the Texas standardized testing program, which evaluates

public primary and secondary school students’ competencies in various grades and subjects.

Further, we integrate data concerning college enrollment decisions from the Texas Higher

Education Coordinating Board (THECB), supplemented by information from the Integrated

Postsecondary Education Data System (IPEDS). Finally, the Texas Workforce Commission

(TWC) supplies data on post-high school earnings, completing our comprehensive dataset.

In constructing our control variables, we follow the approach used by Mountjoy (2022),

utilizing three types of covariates: student-level demographics, school characteristics, and

neighborhood characteristics. For student-level demographics, we include categorical vari-

ables for gender, eligibility for free or reduced price lunch as a proxy for economic disad-

vantage, and an indicator for graduation under one of three programs: the Distinguished

Achievement Program, Recommended High School Program, or the Minimum High School

Program, which reflect the various graduation tracks in Texas. In some of our analyses, we

use test scores from Texas Assessment of Knowledge and Skills (TAKS) tests. We consider

test scores from the exit exams in English-Language-Arts (ELA), which capture language

skills, and Math test scores, these tests were held consistently across our three cohorts of

interest. We then create a single measure of test scores by combining them in a one-factor

model separately by cohort and normalize this factor to within-cohort percentiles. These

high-stakes tests, which imply that they are likely to be indicative of student ability .Passing

these exit-level test is a graduation prerequisite for Texas high school seniors in their junior

and senior years.

For high school-level controls, we utilize NCES Common Core data, which incorporates

the geographic locale code. This code categorizes urbanization into twelve detailed categories

using Census geospatial data. Additionally, we include the distance to two-year colleges

and an indicator denoting whether the school is classified as a Vocational Education School.
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Vocational schools are identified as those that provide formal training for semi-skilled, skilled,

technical, or professional occupations to students of high school age who may opt to enhance

their employment prospects, possibly instead of preparing for college admission. Controls

also account for the local influence of the oil and gas industry, by measuring the long-

term share of oil and gas employment at the high school level, employing NAICS industry

codes from TWC workforce data. We normalize this measure of oil and gas employment by

ranking it and control for its effects using a third-degree polynomial in our analysis of school

characteristics.

Neighborhood characteristics include the 62 Texas commuting zones using the year-2000

mapping provided by the U.S. Department of Agriculture’s Economic Research Service.

We also construct an index of neighborhood quality, akin to the test score measure: We

combine the tract-level Census measures of median household income and the percent-

age of households below the poverty line with the high school-level percentage eligible for

free/reduced-price lunch into a one-factor model, then normalize this neighborhood factor

to the within-cohort percentile. When controlling for neighborhood characteristics in the

following discussion, we control for the third-degree polynomial of the neighborhood factor.

As outlined in section C.2 in the Appendix, nonparametric identification necessitates an

instrument. We employ the measure of proximity to the nearest 4-year colleges, calculating

ellipsoidal distances between the coordinates of all Texas public high schools (sourced from

NCES CCD) and those of all Texas postsecondary institutions (from IPEDS). We determine

the minimum distances within 4-year sectors for each high school. To supplement some

missing distances, we refer to Mountjoy (2022), which involved manual collection of location

data by verifying each college’s institutional profile. We adopt the same methodology for

the variable of distance to 2-year colleges.

We limit our sample to cohorts from 2003 to 2005 to ensure a long time horizon. This

approach, leveraging our earnings data, allows us to observe outcomes 16 (for the cohort

of 2003 and 2004) and 15 years (for the cohort of 2005) into the future, thus better under-

standing the incentives faced by these students. Additionally, the Texas Higher Education

Coordinating Board (THECB) has provided data on students attending four-year colleges,

including both private and public institutions, starting from 2003. We further narrow our

sample to high school students who are not enrolled in special education programs, are be-
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tween the ages of 17 and 18 in the 12th grade, and have graduated from high school with at

least the minimum requirements. As with any study focused on a specific state, there is a

risk of out-migration; however, Texas has one of the lowest out-migration rates in the U.S.

(Times (2014)). Following Mountjoy (2022), we also limit our test factor to individuals with

grades below the 80s percentile. As Mountjoy (2022) discusses, high school students with

a test score factor higher than the 80th percentile are more likely to enroll in out-of-state

colleges. Figure A1 in the Appendix further illustrates that these individuals are more likely

to have missing earnings data.

4 Summary Statistics and Empirical Patterns

Table A1 in the Appendix presents summary statistics for the analysis cohorts. The table

shows substantial disparity in socio-economic backgrounds among the groups. A significant

proportion of Hispanics originate from low-income families, necessitating reduced-price or

free meals. They also live in census tracts with higher unemployment rates and a greater

proportion of families below the poverty line. Over 58% of Hispanics attend Title I schools,

markedly more than their White counterparts. Conversely, regarding the programs offered

at these schools, there is no substantial difference in the distribution. Similarly, there is no

significant difference in how schools inform students about the oil industry; the proportion of

high school graduates working in the oil and gas industries over the long term is similar. Ge-

ographically, Hispanics are more likely to reside in urban areas, while Whites predominantly

live in suburban and rural areas. Furthermore, in terms of proximity to colleges, Hispanics

tend to live nearer to both four-year and two-year colleges compared to non-Hispanic Whites.

In what follows, we delve deeper to describe the college attendance gap and the two

driving mechanisms: earnings and information.

4.1 College Attendance

The first row of Table A1 in the Appendix shows that the choice gap in the decision to attend

a four-year college in the first year after high school graduation between Hispanics andWhites

is 9%. Table A7 in the Appendix examines the extent to which observable factors contribute
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to this disparity. The first row adds control for individual characteristics. Controlling for

neighborhood characteristics increases the average choice gap to 13%, implying that the

choice gap between Hispanics and Whites who reside in similar neighborhoods is larger than

the average choice gap in the population. Controlling for individual characteristics reduces

the remaining gap back to 8.6%, controlling for school characteristics does not change the

gap by much and reduces it to around 7.6%. Finally, controlling also for test scores reduces

the gap to 4.28%, implying that test scores help explain a large portion of the choice gap.

Figures 2 and 3 illustrate that there is high dispersion in both Whites’ and Hispanics’

likelihood of attending college. These figures plot histograms of the propensity scores for

Hispanics and Whites attending college, estimated using a Probit model with our control

set and the distance to a four-year college. Firstly, they reveal a large overlap in propensity

scores, as required for our identification argument, as discussed in Section 2.5 and Appendix

C.2. Furthermore, the figures demonstrate that Whites are more likely to attend college,

ex-ante, based on their characteristics, as for both college-goers and non-college goers, the

distribution of propensity scores for Whites is more skewed to the right.
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Figure 2: Propensity Scores - Hispanics
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Figure 3: Propensity Scores - Whites
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4.2 Earnings

We now turn to focus on the differences in earnings distributions between Hispanics and

Whites. Tables A2 and A3 in the Appendix show the average quarterly earnings for Whites

and Hispanics at various intervals post-graduation. Generally, wages are on an upward trend

over time, albeit at a decreasing rate. The tables show that mean earnings of Whites are

higher than those of Hispanics for any period after high school graduation. When splitting

the earnings by college goers and non-college goers, we can see that after 15 years, Whites’

earnings for both college goers and non-college goers are higher. The table also shows that in

the first years after high school graduation, the differences between Hispanics’ and Whites’

earnings are small.

For our discussion, the most important component is the differences in earnings between

college attenders and non-college attenders, across Hispanics and Whites. Figure 4 explores

this difference. The figure plots the coefficient for attending a four-year college for both

Hispanics and Whites, controlling for cohort fixed effects. The figure shows that the gap

in earnings between first-year college goers and non-college goers increases over time for

both Hispanics and Whites. Notably, this difference widens in the first five years post-

graduation and then stabilizes at around $500, which is approximately 6% of the average

quarterly earnings for Hispanics 14-16 years after graduation. Figure 5 introduces our set

of individual, school level, and neighborhood level controls. The figure shows that adding

these controls reduces the levels but does not affect the gap, demonstrating that the gap in

earnings is not fully explained by these controls.

Within the framework of our model, these differences suggest that Hispanic high school

graduates may have less incentive to attend college compared to their White counterparts.

However, this observed gap could be attributable to selection bias rather than reflecting

the actual returns faced by the high school graduates. To overcome this selection effect,

we utilize the distance to college from high school as an instrument in a Two-Stage Least

Squares (TSLS) analysis.8

First, to examine the instrument’s validity, we explore its relation with test scores. As

8The use of distance to college as an instrumental variable has been prevalent in the literature that
estimates returns to education. See Card (1995) and its subsequent application in works such as Carneiro
et al. (2011), Carneiro and Lee (2009), Kapor (2020), Abdulkadiroğlu et al. (2020), Mountjoy (2022).
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Note: Figure 4 plots the coefficient for attending a four-year college for both Hispanics and Whites,
controlling only for cohort fixed effect. The Coefficient for 16 years after college is using only two
cohort, 2003-2004. Figure 5 plots the same coefficient, with all the added controls, as discussed in
section 3

we discuss below, test scores are both associated with potential outcomes and with the

decision to go to college. Therefore, if the exclusion restriction holds, we do not expect that

distance to college should be correlated with test scores, conditioned on our set of controls.

Table A4 in the Appendix examines the correlation between the instrument and test scores.

Initially, without our set of controls, test scores show a significant correlation with the

instrument. After including individual characteristics, this correlation persists, which might

indicate that spatial sorting is non-random and likely tied to other factors that influence both

outcomes and information. Subsequent rows in the table introduce more controls for school

and neighborhood characteristics, which largely account for the initial correlation, rendering

the coefficient on distance nearly null, indicating that the instrument may be valid.

We next examine the relevance assumption needed for the instrumental variable. Table

A5 in the Appendix shows a strong first stage: the influence of distance to college on the

likelihood of attending a four-year college immediately after graduation. Controlling for

our set of controls, we see that an increase of one mile in distance to college decreases the

likelihood of college attendance by 0.2% for Hispanics and 0.1% for Whites. The magnitude

of this effect remains relatively stable upon the inclusion of different controls. Keep our

discussion in section 2.3 in mind. The fact that the effect of the distance to college is
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stronger for Hispanics indicates that either their beliefs are more dispersed, which implies

that they have better information quality, or that the difference µR − C is higher.

Table 1 presents the results from the TSLS regression that instruments the treatment

effect using the distance to college instrument and includes all controls. It shows that, after

adjusting for selection, the average effect for Hispanics is negligible, persisting up to 16 years

post-high school graduation. For Whites, on the other hand, there is a gradual effect that

mirrors the earnings dynamics depicted in Figure 5. These findings suggest that the returns

for Hispanics are generally much lower, potentially diminishing the incentive to pursue higher

education.

All Hispanics Whites

Avg. Wage 8-10 245.0 707.0 -1108.62
(1194.0) (1237.0) (2028.0)
245206 103198 142008

Avg. Wage 10-12 875.0 305.0 521.0
(1436.0) (1468.0) (2295.0)
239307 101284 138023

Avg. Wage 12-14 1552.0 255.0 2380.0
(1531.0) (1550.0) (2370.0)
233091 99428 133663

Avg. Wage 14-16 2605.0 377.0 5156.0
(1632.0) (1745.0) (2424.0)
149498 63271 86227

Table 1: Returns - Two Least Squares

Note: This table presents the results from a Two-Stage Least Squares (TSLS) regression of
college attendance on earnings. Earnings are measured in periods of 8-10, 10-12, 12-14, and 14-
16 years after the students’ high school graduation. We instrument college attendance using the
distance to the nearest college and control for individual, school, and neighborhood characteristics,
as discussed in Section 3. For the 8-14 year period post-graduation, we include cohorts from 2003-
2005. For the 14-16 year period, we include only the 2003-2004 cohorts due to data limitations.

Finally, our measures of quality focus on the amount of variance in earnings that infor-

mation can explain. Table A2 demonstrates that Whites have higher variability in earnings

compared to Hispanics at each point in time after graduating, hinting that more information

is needed to better predict Whites’ earnings than Hispanics’. We explore this notion further

in Figure A4 in the Appendix, where we demonstrate that not only are wages more variable,
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but there is also higher variability in the industries in which Whites work. The figure plots

Shannon’s entropy for the 2-digit NAICS industry codes in which Hispanics and Whites are

employed each year after high school graduation. The figure shows that, throughout their

lives, Whites are less concentrated in specific industries compared to Hispanics. This also

supports that it’s harder to predict Whites’ later-life outcomes compared to Hispanics.

4.3 Information

To get a sense of the quality of information is challenging, as we do not observe in the data

the pieces of information high school students have access to. We therefore consider specific

signals we can observe in our data, or in auxiliary data sets. Specifically, we first examine how

informative the information contained in school performance measures is. This is information

we can observe in our data, and students are likely to hold and use when making decisions

on whether or not to attend college. We then continue to describe survey results that

demonstrate that Hispanic and White students utilize similar sources of information in their

decisions related to career and education choices.

Test scores and school performance provide important information for high school stu-

dents for their decision-making process. Grades act as sources of information and signals

available to students before making a decision. From this perspective, agents receive grades

and use them to form projections about the utility of these grades. Consequently, we also

examine whether grades convey informative signals about returns and whether there exists

disparities in quality between Whites and Hispanics.

Table A1 reveals a notable gap in academic readiness between Hispanics and Whites,

as evidenced by exit exam grades. To what extent does this gap contribute to the overall

disparity? We first show that grades and test scores are likely to affect choices, as discussed

above. The final row in Table A7 in the Appendix demonstrates that when we account for

our measure of test scores, the gap narrows to 4.8%, implying that at least some of the gap

is driven by differences in test scores. As the decision to attend college is made after test

scores are known, this suggests that test scores themselves are used in the decision process.

Furthermore, Table A1 demonstrates that grades are significant in explaining choices. In

a Probit model predicting these choices, the inclusion of grades increases the Area Under
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the Curve (AUC) from 0.74 to 0.77 for Whites and from 0.75 to 0.8 for Hispanics. This

magnitude of increase is comparable to that observed when adding school and neighborhood

characteristics to individual characteristics, rising from 0.68 to 0.75 for Hispanics and from

0.67 to 0.74 for Whites. These findings again imply that high school graduates likely consider

exit exam grades and their informational value in their college enrollment decisions.

Are grades informative on returns? We first explore whether grades are likely to contain

information about returns. To ascertain whether grades predict earnings and returns, Figure

A2 in the Appendix illustrates the relationship between earnings and grades for both college

attendees and non-attendees. The figure shows that for both Hispanics and Whites, higher

grades correlate with increased earnings, irrespective of college attendance. Additionally, as

grades increase, the earnings gap widens between those who attend college in their first year

and those who do not. This is supported by the regression in Table A8 in the Appendix,

which reveals that a one-unit increase in test scores raises the raw gap by approximately

$16, controlling for our set of controls. Both figures and the regression table suggest that

the difference in informativeness of test scores across the two group is relatively small.

The relationship between school informativeness is further examined in Table 2, which

we discuss further in Section 5. This table presents the out-of-sample R2 from a model that

employs Extreme Gradient Boosting to predict earnings based on students’ course-taking

patterns and the pass-fail indicator for Hispanics and Whites. The R2 values are remarkably

similar for both groups. This implies that the quality of information from school performance

measures is comparable for Whites and Hispanics.

Finally, to explore what other sources of information are used by high school students,

we use a survey conducted by the Texas Higher Education Opportunity Project9. Table A9

in the Appendix shows that Hispanic high school students are slightly more likely than their

White peers to approach and discuss with the school counselor about education and career

decisions. Specifically, 56% of Hispanics discuss their school counselor about career options

vs. only 45% of Whites. Similarly, 61% of Hispanics discuss with their school counselor about

college options, vs. 58% of Whites. Furthermore, Table A10 shows that the number of yearly

interactions with the school counselor on these and other matters is almost the same across

9A more detailed description of Texas Higher Education Opportunity Project can be found in F in the
Appendix.
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In Sample R2 Out of Sample R2

Fixed Effects No College All 0.19 0.11
Hispanic 0.17 0.09
Whites 0.18 0.10

College All 0.15 0.09
Hispanic 0.14 0.09
Whites 0.11 0.06

W/O Fixed Effects No College All 0.20 0.10
Hispanic 0.18 0.09
Whites 0.20 0.09

College All 0.15 0.10
Hispanic 0.16 0.09
Whites 0.13 0.08

Table 2: School Informativeness - R2

Note: This table displays the in-sample and out-of-sample R2 values for a model predicting
average earnings 12-14 years post high school graduation. The No-FE rows (”No Fixed Effect”
) incorporates individual characteristics (as detailed in Section 3), test scores from exit exams in
math and English comprehension, and indicators for each course taken during the three years of
high school, including pass/fail status, taken from the Texas Education Agency data. The FE rows
(”Fixed Effect”) additionally includes a high school indicator variables, controlling for the impact
of different high schools. Estimation is conducted using XGBoost, with parameter selection via
Parallelizable Bayesian Optimization, as implemented in the R package ”Parallelizable Bayesian
Optimization.”

both Hispanics and Whites, indicating that the nature of interaction across the two groups

is similar. Table A11 in the Appendix shows that Hispanics are slightly more likely to seek

advice from their parents about educational and career decisions. These indicators together

demonstrate that Hispanics and Whites turn to the same type of information sources for

information.

These results indicate that Hispanics and Whites encounter varying distributions of re-

turns. However, the quality of information available to them through the school system

does not significantly differ. This motivates the utilization of our model to gain a deeper

understanding of how these differences contribute to the choice gap.
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5 Model Results

In this section, we estimate the model outlined in section 2.2 and discuss the implications

of the estimated parameter for the role of information in determining the gap. Our analysis

assumes that individuals are primarily concerned with their quarterly earnings 12-15 years

post-graduation. As demonstrated in table 1, positive returns to college education starts

approximately after 12 years. Consequently, we average the quarterly earnings within this

12-15 year period. This approach enables us to use data from our three cohorts and effectively

capture the structural components, averaging over a long period. Detailed discussion on the

estimation method is in Appendix D.

We start our analysis by examining the relationship between the perceived cost of at-

tending college and beliefs among Hispanic and White students. Figures 7 and 6 present

histograms of the estimated costs for these groups, revealing that Hispanic students gener-

ally face lower attendance costs. As discussed in section 2, these costs encompass barriers

to entry, such as credit constraints or discrimination, and are also influenced by preferences

shaped by social norms and other factors. Table 3 further shows that the average cost for

Hispanic students corresponds to $1,199 of their quarterly earnings, compared to $2,879 for

White students. In addition the to cost, figures 6 and 7 also explore the distribution of con-

ditional returns E[α1 −α0|x], which represent the mean beliefs about returns for individuals

with characteristic x. The two figures demonstrate that White students exhibit significantly

higher expected returns than Hispanic students.

Table 3 further complements this analysis, showing that the average beliefs on returns

are lower than the actual average return for both groups. Specifically, the gap between

the mean costs and mean beliefs about returns is narrower for White students ($949) than
for Hispanic students ($2256). This implies that to achieve parity in choice across groups,

the information quality of Hispanics have should be much better than those of Whites, as

discussed in section 2.

We now turn to look at the estimated distributions of beliefs on U1−U0. Table 3 presents

the estimated variance of α1, α0 residuals, and beliefs for the two groups. The variance in

beliefs among Hispanics is notably higher than that among Whites, and the variances for

the residuals of α1 and α0 the means are generally higher among Whites, although we can’t
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Figure 6: Hispanics Costs and Beliefs
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Figure 7: Whites Costs and Beliefs
Note: Figures 7 and 6 present histograms of the estimated costs and conditional priors E[α1−α0|X]
for Hispanics and Whites, respectively. These estimates are derived according to the model discussed
in Section 2. The parameters α1 and α0 represent the average quarterly earnings of high school
students 12-15 years after graduation.

rule out statistically that they are equal. These differences suggest that the quality of

information, as measured by R2, is the same or lower for Whites than it is for Hispanics. If

the residual variance of returns for Whites is higher or the same as that for Hispanics, this

implies that choice outcomes are less predictable for Whites. In both cases, the quality of

information on returns hinges on the covariance structure of U1 and U0. Figure A5(a) in

the Appendix shows plots the estimated CDF of the beliefs distribution, conditioned on the

average covariates, and figure A5(b) shows the CDF where we fix all covariates and constant

to zero. The figure shows that for both Hispanics and Whites, the beliefs are systematically

higher for the average White high school student. Concentrating on the CDF’s shape when

X = 0, we can again see that for White and Hispanics Students with the same observables,

the beliefs of Whites are less dispersed.
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P(D=1) σE σ0 σ1 Avg. Cost E[α1] E[α0] E[α1 − α0]

Hispanics 0.21 2381 4490 6264 1199 6658.0 7715 -1057
(657.0) (125.0) (818.0) [889] (1795.0) (1843.0) [2573.0]

Whites 0.29 1414 5577 6316 2879 10871 8942.0 1930.0
(873.0) (155.0) (491.0) [693] (2149.0) (2211.0) [3083.0]

Table 3: Model Parameters

Note: The table displays model parameters estimated using average quarterly earnings 12-15
years after high school graduation. Standard errors for these parameters are presented in round
parentheses ( ). Standard deviations of the costs and beliefs are indicated in square brackets [ ].

5.1 Measuring the Contribution of Information Differences to the

Choice Gap

In this section we explore the decomposition results. We first consider the analysis of our

results for the case in which µρ = 0, we then explore how robust our results, under different

assumptions on the the prior distribution.

5.1.1 Main Results

Our objective is to explain the almost 8% gap in college attendance decisions between His-

panics and Whites. Table 4 explores the decomposition exercise, focusing on how much of the

gap is explained by differences in information quality between the two groups. Row 1 of the

table shows the information and returns channel, under our main assumption that µρ = 0.

The table shows that most of the choice gap is driven by the returns channel. Specifically,

the information channel constitutes −97% of the choice gap, which implies that eliminating

the differences in information would result in increasing the gap by 7.7 percentage points. On

the other hand, the returns channel consittute 197% of the gap, and eliminating it reduces

reduces the choice gap by 15.6 percentage points. Therefore the finding shows that fully

eliminating the differences in returns would eliminate the choice gap and reverse it, causing

the Hispanic share to surpass the share of Whites who choose to enroll.

The decomposition shows that most of the choice gap is driven by differences in returns,

with information playing a small role in shaping the gap. Moreover, current differences in
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information help to mitigate the gap, and if both groups had the same quality of information,

the gap is likely to double in size. Therefore, the results indicate that a policy aimed at

reducing differences in information quality is likely to be less effective in reducing the gap

than a policy that targets differences in the returns to college for the two groups.

Information Channel Returns Channel

1) µρ = 0 -0.077 (-97.116%) 0.156 (197.0%)

2) All Possible R2
1

LB, CF= 0.41 -0.121 (-152.532%) 0.2 (253.0%)
UB,CF= 0.243 0.046 (57.807%) 0.033 (42.193%)

3) R2
1 ≤ 0.3

LB, CF= 0.369 -0.079 (-100.15%) 0.159 (200.0%)
UB,CF= 0.342 -0.053 (-66.8%) 0.132 (167.0%)

4) R2
1 ≤ 0.5

LB, CF= 0.378 -0.089 (-112.35%) 0.169 (212.0%)
UB,CF= 0.325 -0.036 (-45.38%) 0.115 (145.0%)

5) Unrestricted Mean Beliefs
LB, CF= 0.456 -0.167 (-209.918%) 0.246 (310.0%)
UB,CF= 0.189 0.1 (126.0%) -0.021 (-25.952%)

Table 4: Main Decomposition

Note: This table shows the main decomposition results. Row 1 shows our main results, the de-
composition of the choice gap into the information channel and returns channel. Rows 2-4 show the
upper bound (UB) and lower bound (LB) of the information channel under the different assump-
tions on the quality of information individuals have on their college earnings (R2

1), as discussed in
the main text. The bounds on the Counterfactual (CF) share of Whites who would go to college if
they had the information quality of Hispanics are shown for each case. Row 5 shows the lower and
upper bounds of the information channel and returns channel in the case where we only restrict the
mean prior beliefs to lie on the feasible set ρ.

5.1.2 Robustness Analysis

Our decomposition results are partially based on the assumption we have on the prior beliefs

on ρ. In this section, we explore the robustness of our results concerning this assumption. To

do so, we consider two approaches. First, we relax the assumption that we know the support
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of feasible ρ’s but maintain the assumption that the beliefs are centered in the middle of

the support, from the individual perspective, as discussed in section 2. Next, we relax the

assumption that mean priors are at the middle of the support and explore how this may

affect the returns and information channels.

We start by imposing our insight on what can be learned about the support of ρ from

the perspective of the individuals. Row 2 in Table 4 shows the upper and lower bounds

on the information and returns channels without any restrictions on individuals’ feasible

support of ρ. As we can see, without any restrictions, the bounds are wide, ranging from the

information channel share being between for −153% to 58% to the current gap. As shown

in Table A13 in the Appendix, these upper and lower bounds are achieved when the quality

of information on college earnings, R2
1, of either Whites or Hispanics is at its highest value

(60% of variance can be explained for Hispanics and 75% for Whites), and is at it’s lowest

value for the other group (10% of variance can be explained for Hispanics for Hispanics and

1% for Whits). As we discuss more in the next section, these extreme values are unlikely

to be feasible, as they imply that individuals can explain a large share of their variance

in future earnings. To make more realistic assumptions, we consider the case in which we

restrict the quality of information agents have on their marginals, to be not more than a

certain level. This type of restriction is similar to other restrictions which impose constraints

on what variables are contained in the information set (e.g., Willis and Rosen (1979)). In

our setup, the exact variables that individuals have do not matter, but what is important is

how informative they are. Therefore, we take this new approach of restricting the predictive

power individuals have.

Row 3 in Table 4 imposes a more realistic assumption on the quality of information.

We restrict the share of explained variance of college attenders earnings, for both groups,

to be less than 30%. Under this constraint, we can see that the information channel now

contributes between -100% to -66% of the gap, which is close to our main results. Row 4

considers that individuals may explain up to 50% of the variance of their college earnings,

and we can see that the bounds we get are wider, but still, information differences contribute

to reducing the choice gap.

Next, we take a different approach, by relaxing the assumption that the prior mean is

at the center of the support, and allow it to be anywhere on the feasible support. Row 5 in
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Table 4 shows the lower and upper bounds of the information channel and returns channel

in the case where we only restrict the beliefs to lie on the feasible set. As we can see, these

bounds are extremely wide, allowing for the information channel to go from reducing the

gap by 16.7 percentage points (209% of the current gap) to increasing it by 10 percentage

points (126% of the current gap size), where the returns channel can go from reducing the

gap by 24 percentage points to increasing it by 2 percentage points.

As seen in Table A13, these two extreme bounds are achieved in the case where the beliefs

are degenerate and are the polar opposite of the feasible set of ρ’s support. Specifically,

the lower bound of the decision to go to college is when Whites’ µρ,Hispanics = 0.89 and

Hispanics’ µρ,Whites = −0.9, and the upper bound where the two are switched. This implies

that the bounds are achieved in the case where the two groups have very different beliefs

on how earnings behave, and they face no model uncertainty on the correlation between

potential outcomes. We, therefore, consider a more realistic case, where we allow the mean

priors to differ between the two groups by a small amount. Figure 8 shows the information

channel weight and size for different mean priors. First, the black line shows the case

where the two correlation values are the same. We can see that in this case, information

only contributes to decreasing the gap. For most values of µρ,Whites, we observe the gap

increasing by approximately 7-8 percentage points, suggesting that providing Whites with

the information quality available to Hispanics would double the size of the gap, similar to

our main result. The shaded area around the black line considers the case where we allow

the mean beliefs values to differ between the two groups by a certain amount. The red

shaded area considers the case where the differences between beliefs are allowed to differ by

no more than 0.05. For all values considered, the gap suggests that reducing the information

disparities between Hispanics and Whites contributes to narrowing the choice gap, thereby

contributing to equality in choice. The other shaded regions show how the bounds widen as

we allow the values to differ by up to 0.15.

The results in this section suggest that disparities in information quality between Whites

and Hispanics contribute to narrowing the choice gap, with a significant portion of this

gap attributed to differences in returns. Should the disparities in information quality be

eliminated, it would lead to an approximate 50-80% increase in the choice gap.
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Figure 8: Information Channel for Different µρ

6 Assessing the Impact of Additional Information on

Narrowing the Choice Gap

In the previous section we found that information differences contribute to reducing the

choice gap between Hispanics and Whites. In this section we ask how can a policy maker

use information in order to close the choice gap between Hispanics and Whites. We con-

sider a policy maker with access to some information in the form of database that includes

information on students characteristics, demographics, test scores, other relevant informa-

tion and students outcomes labor market outcomes. This policy maker can then use this

information and provide additional signal for students to better inform them on their conse-

quences of their choices. We take the extreme case where the policy maker provide additional

information only for Hispanics and ask how accurate should that information be in order

to achieve parity in choice. Here, “additional information” refers to new signals that are

orthogonal to an agent’s existing information set; that is, we focus exclusively on previously

unknown information that a policymaker could introduce. In practice, a policymaker is likely

to disseminate information that correlates with what individuals already know, potentially
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overlapping with their private information. Therefore, in our thought exercise, we consider

the case in which individuals first residualize the policymaker’s signal and use only their

existing information and the additional residualized information to inform their beliefs. We

then examine how the information quality of this additional information affects the choice

gap. Specifically, we engage in three thought exercises for this purpose. First, we consider

providing information that is solely informative about earnings if the individual chooses to

go to college. Second, we examine the opposite scenario where the additional information is

informative only about earnings if they opt not to go to college. Finally, we consider pro-

viding information that is relevant to both types of earnings. In our thought experiments,

we assume that the policymaker, akin to an econometrician, can only provide information

on the marginal distributions of U1 and U0, as she cannot know their joint distribution. For

example, the policymaker could offer students a series of tests, then provide predictions on

potential earnings depending on whether they attend college or not. To measure the preci-

sion of this additional new information, we quantify it by its ability to explain the marginals

of U1 and U0, therefore we describe these additional signals in terms of R2 on the marginals.

To formally introduce the idea of new information, let sn be the additional signal that a

policymaker provides to Hispanics, after it has been partialled out from the agent’s existing

information. We assume that the signals are drawn from a Gaussian distribution and are

correlated with α1 and α0. The fact that the signal is partialled out implies that sn ⊥⊥ S,

i.e. we assume that this new information is information that individuals were not able

to predict given their current information set. Furthermore, as the signals and state are

jointly Gaussian, the agent’s beliefs are additive. Specifically, we can write the individuals’

counterfactual beliefs, given their current signals and the additional information, as

E[U1 − U0|S, sn] = E[U1 − U0|S] +
Cov(U1 − U0, sn)

Var(sn)
sn.

where we used the linearity of the Gaussian distribution and the independence assumption.

Next, to understand how the additional information affects choice we need to derive the

variance of the counterfactual beleifs distribution. Denote by R2
1,n and R2

0,n the information

quality of the new signals on U1 and U0, respectively. Thenwe can express the additional
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component in the variance of beliefs as follows:

Var

(
Cov(sn, Ud)

Var(sn)
sn

)
=

Cov2(sn, αd)

Var(sn)
= σ2

dR
2
d,n

Without loss of generality, we can fix Var(sn) = 1 and then set Cov(sn, Ud)
2 to meet the

required R2
d value. Then, using the fact that sn ⊥⊥ S, we can derive the variance of the

counterfactual beliefs, with the additional information:

Var(E[U1 − U0|S, sn]) = Var (E[U1 − U0|S]) + Cov2(U1, sn) + Cov2(U0, sn)− 2Cov(U1, sn)Cov(U0, sn)

= Var(E[U1 − U0|S]) + σ2
1R

2
1,n + σ2

0R
2
0,n − 2

√
R2

1,nR
2
0,nσ1σ0.

(6)

Given the cost function and µR, we can calculate the counterfactual share of students who

would attend college if they were provided with this additional new information. Notice

that in order to calculate the counterfactual shares we do not need to know the correlation

between U1 and U0, as we consider how the new information is informative on the marginals,

but not on the difference.

6.1 The Effect of Additional Information

We start by focusing on adding information exclusively to either U1 or U0, but not both. To

achieve parity, we consider additional information previously unknown to the agent about

earnings if he opts for college, which necessitates that the quality of this signal be at R2 =

24%. This implies that the additional information must independently explain almost 25%

of the variance in U1. In a similar vein, for a signal on U0 that aims to achieve parity in

choices between Whites and Hispanics, it must be capable of explaining 49% of the total

variance in U0.

Figure 9 explores further the counterfactual college attendance changes rate for different

quality levels of additional information on U1 and U0, as quantified by R2
1,n and R2

0,n. This

figure illustrates that focusing the information predominantly on one outcome tends to en-

hance participation more effectively than offering a signal informative about both U1 and U0.

This is due to the fact that information on both U1 and U0 reduces the variance in beliefs,
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as shown in equation 6.

Can policymakers achieve the level of accuracy as discussed above? Our analysis, de-

tailed in Table 2, shows the proportion of earnings variance explained for Hispanic and White

groups using our administrative data. The table presents out-of-sample R2 values from an

Extreme Gradient Boosting model, which predicts earnings 12-14 years post high school

graduation. This model incorporates students’ characteristics, exit exam scores, course se-

lections in high school, and pass-fail for each course, for both Hispanics and Whites. Such an

analysis simulates the data a policy maker might want to utilize in advising students about

college decisions. The table shows that approximately only 10% of the variance in earnings

for both college attendees and non-attendees in our sample can be explained using this infor-

mation. This is much lower than the needed level of information quality to achieve equality

of choice. Introducing fixed effects for schools into the model does not markedly improve

prediction accuracy. We preform a similar exercise using the National Longitudinal Survey

of Youth 1997 (NLSY97), as shown in Table A12 in the Appendix. Here, due to to a smaller

sample size, we employed linear regression to estimate earnings for individuals aged 34 or

35, both college attendees and non-attendees. The NLSY97 dataset provides extensive indi-

vidual data, covering aspects like gender, cohort, urbanicity, abilities (measured via ASVAB

tests), parental education and income, and high school performance. Most importantly, the

direct measures of ability and parental income, are typically not available in administrative

datasets, thus set a potential upper limit on the prediction quality a policy maker can make.

Our analysis using adjusted R210 reveals that up to 17% of earnings variance for non-college

Hispanic and and less than 10% for other groups, can be accounted for. It’s important to

note that in our counterfactual exercise above, we consider providing new information to

students. A large share of the information schools can provide is already known to students

and, therefore, is even less likely to generate significant changes in behavior.

Other research has noted the limitations of current models, measurements, and ap-

proaches in explaining variations in outcome variables of interest in social science (Salganik

et al. (2020),Garip (2020)). Specifically, similar to our study, other papers examined how dif-

10We use in-sample adjusted R2 due to the smaller sample size. This approach, while not ideal, is frequently
employed in literature discussing the prediction of earnings based on high school performance (Murnane et al.
(2000),Watts (2020),Borghans et al. (2016)).
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ferent pre-college measurements of ability, such as IQ, achievement tests, high school grades,

or personality tests, explain the variance in earnings and other metrics (Murnane et al.

(2000), Watts (2020), Borghans et al. (2016)). They found that these measurements explain

up 20%.11 These results collectively suggest that our standard data, which are likely to use

in any recommendation systems for college, is not informative enough in order to explain

future earnings. Therefore, achieving equality through informational interventions might be

challenging.
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Figure 9: The effect of additional information on Earnings

Note: Figure 9 shows the counterfactual share of Hispanics who would attend college after

providing them with an additional signal of information quality on U1 of R2
1 and information quality

on U0 of R2
0. For both figures, the quality of information is measured based on the ability to explain

quarterly earnings 12-15 years after high school graduation.

11It’s important to note that these measures usually use in-sample R2, or adjusted R2. which are usually
higher than the out-of-sample ones (Hastie et al. (2009)). The out-sample R2 is the one we care about as it
do not suffer the over fitting
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7 Conclusions

Individuals from diverse backgrounds have unique upbringings that significantly shape their

later life and subsequent choices. Such experiences are pivotal in defining the constraints

and opportunities they encounter, along with the outcomes and their information on these

outcomes. This project explores how differences in returns and information affect different

groups’ college-going decisions. In this context, differences in the outcomes and information

can be driven by disparities that take place prior to the time the decision is made (Neal and

Johnson (1996)). For example, information differences can arise when affluent groups have

access to better information on college outcomes compared to less fortunate ones. Similarly,

growing up in wealthier backgrounds can also lower college costs for children. More generally,

differences in information and potential returns are likely to rise in dynamic models, where

past decisions affect the current decision environment. For instance, Cunha and Heckman

(2007a) and Cunha et al. (2021) illustrate three ways through which early life disparities can

shape future opportunities: through affecting the choice set, the dynamic incentives, and

the information individuals possess about the outcomes of investments. Better understand-

ing how these past disparities affect future disparities is crucial to understand what drives

disparities.

In this project, we focused on the gaps in the quality of information. Differences in quality

are not solely a byproduct of past decisions and disparities but are also driven by the future.

This is particularly evident when considering the challenges associated with predicting labor

market outcomes. Earnings for different groups can vary widely due to factors like industry

sector trends, geographic economic conditions, and social biases. These disparities affect not

only the returns distribution but also the ability to predict future returns. For example,

minorities may suffer from discrimination that results in them earning lower wages, but

this outcome is easier to predict than the case where some earn low wages and some high

wages. If there is less uncertainty in future earnings, it may be easier to predict the future.

Therefore, focusing on information quality allows measures through which both the past and

the future affect current disparities.

This paper introduces a new approach to analyze how differences in information and po-

tential returns across groups impact choice disparities. Therefore, we take a more systematic
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approach (Bohren et al. (2022),Small and Pager (2020)) not focusing on a specific channel or

variable that affects choice but focusing on the cumulative effect of past and future disparities

on the current choice gap. In our empirical exercise, we find that the information differences

between Hispanics and Whites help to mitigate the choice gap, implying that future and

past disparities contribute to the gap mainly through incentives and not through informa-

tion on these incentives. In the second part of the paper, we find that achieving parity in

choice through policy interventions that provide additional information to Hispanics may

be extremely difficult, as the amount and quality of additional information Hispanics need

is extremely high. This suggests that while information-based initiatives may have limited

effectiveness, strategies directly targeting outcomes may be more effective in the long term

to achieve parity in choices.

Finally, the approach proposed in this paper could be applied to other scenarios where

it may be interesting to quantify drivers of choice gaps, such as cases of discrimination,

healthcare, and other decisions related to investing in human capital and skill development.

The central idea we present here is that in order to comprehend the drivers of behavioral

differences and choices, as well as why these disparities persist, we must put a spotlight on the

information environment in which people make decisions. Understanding the informational

environment in which people operate is essential for understanding why and how differences

across groups are formed and persist.
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(a) Relation between test scores and missing
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(b) Relation between test scores and missing
Earnings for earnings 12-15 years after high
school graduation

Figure A1: Relation Between test scores and Missing Earnings

Notes: The above figures plot the share of missing earnings by test score factor, as described in

Section 3. The first figure presents the missing earnings for the period of 10-15 years after high

school graduation. Figure (b) illustrates the share of missing earnings for the period of 12-15 years

after high school graduation. The red line indicates the expected trend line.
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(a) Relation between test scores and earnings
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(b) Relation between test scores and earnings,
by college attendance

60
00

70
00

80
00

90
00

10
00

0
W

ag
e 

10
-1

5 
Ye

ar
s 

Af
te

r H
G

0 20 40 60 80
Test Factor Rank

No College College

(c) Relation between test scores and earnings,
by college attendance - Hispanics
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(d) Relation between test scores and earnings,
by college attendance - Whites

Figure A2: Relation Between Test Scores and Earnings
Notes: This figure illustrates the relationship between test score percentile, as calculated in

Section 3, and the expected average earnings 10-15 years after high school graduation. Figure (a)
depicts the correlation between test scores and earnings for all individuals. Figure (b) presents this
relationship, separated for individuals who attended college (red line) and those who did not (blue
line). Figure (c) displays the same data but specifically for Hispanic individuals, while figure (d)
focuses exclusively on White individuals.
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(b) Counterfactuals share of Hispanics
with Whites Information

Figure A3: Counterfactuals share

Notes: The figures illustrate the counterfactual share of White and Hispanic college attendance

for various potential earnings correlation values. Figure (a) depicts the share of White individuals

under the scenario where they are provided with the same quality of information as Hispanics, with

information quality measured across different correlation values. Figure (b) presents the counter-

factual shares of Hispanic college attendance, assuming they received the information quality of

Whites, as gauged by varying correlation values.
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Figure A4: Shannon’s Entropy for NAICS Industries

Notes:The figure displays the entropy of 2-digit NAICS code industries in which Hispanics and

Whites, who attended 4 year college and who did not, are employed, plotted against the number of

years post-high school graduation on the x-axis. Confidence intervals are at 95%.
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Figure A5: Beliefs Cumulative Distribution for Whites and Hispanics
Note: The figure displays the Cumulative Distribution Function of beliefs on α1 and α0 for

both Hispanics and Whites. The shaded area represents the 95% Confidence Interval. Figure (a)
illustrates these beliefs for the case where covariates are set to their mean. Figure (b) depicts the
same graphs with all covariates, including the constant, set to zero.
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B Additional Tables

All Hispanic Whites

College Attendance 0.23 (0.42) 0.18 (0.38) 0.27 (0.44)

Test Factor Percentile 43.18 (22.02) 36.37 (22.02) 48.11 (20.67)

Math Score 45.62 (23.88) 40.29 (24.12) 49.49 (22.94)

Reading Score 47.5 (25.41) 40.11 (25.41) 52.87 (24.03)

No Disadvantage 0.7 (0.46) 0.41 (0.49) 0.91 (0.29)

Elig. Free Meals 0.22 (0.41) 0.44 (0.5) 0.06 (0.24)

Elig. Reduced Price Meals 0.06 (0.23) 0.09 (0.29) 0.03 (0.16)

Other Disadvantage 0.03 (0.16) 0.06 (0.23) 0.0 (0.05)

Distiguish 0.06 (0.24) 0.07 (0.25) 0.05 (0.23)

Minimal 0.22 (0.41) 0.19 (0.39) 0.24 (0.43)

Required 0.72 (0.45) 0.74 (0.44) 0.7 (0.46)

CT Median Income 44027.0 (21371.0) 36265.0 (15939.0) 49663.0 (22986.0)

CT Families Below Poverty Line 14.5 (10.82) 20.08 (12.19) 10.44 (7.42)

CT Share of Employed 63.21 (9.97) 59.92 (10.01) 65.6 (9.23)

Title I schools 0.34 (0.47) 0.58 (0.49) 0.17 (0.38)

No Participation in Tech Program 0.24 (0.43) 0.22 (0.41) 0.26 (0.44)

Enroll in Career Tech Elective (6-12) 0.23 (0.42) 0.2 (0.4) 0.24 (0.43)

Participate in Tech Prep Prog (9-12) 0.32 (0.47) 0.33 (0.47) 0.32 (0.47)

Participate in Tech Prep Prog 0.21 (0.41) 0.25 (0.43) 0.18 (0.38)

Share in Oil Industry 52.73 (28.53) 49.21 (29.14) 55.29 (27.79)

City 0.37 (0.48) 0.52 (0.5) 0.25 (0.44)

Suburb 0.32 (0.47) 0.24 (0.43) 0.38 (0.49)

Town 0.11 (0.31) 0.11 (0.31) 0.1 (0.31)

Rural 0.2 (0.4) 0.13 (0.34) 0.26 (0.44)

Distance to 4-Year College 19.82 (18.8) 18.19 (20.5) 21.04 (17.25)

Table A1: Summary Statistics

Note: The Columns include 12th-grade analysis cohorts from 2003-2005. NCES geographic

categories are condensed into four types (city, suburb, town, rural). Distance from College is

measured using the geodesic distance from the student high school to near by college. CT stands

for the School Census Tract. Distinguish, minimal and required are the share of studnets with the

Distinguished Achievement Program, Recommended High School Program, or the Minimum High

School Program, respectivly. College Attendacne capture the share of high school students who

attended college in the first year after high school graduation year65



All Hispanic Whites Difference (Whites - Hispanic)

Wage 8-10 7117.0 (4533.0) 6393.0 (3974.0) 7627.0 (4823.0) 1234.0 (6249.3)
Wage 10-12 8215.0 (5194.0) 7348.0 (4509.0) 8852.0 (5558.0) 1504.0 (7157.0)
Wage 12-14 9079.0 (5808.0) 8046.0 (4952.0) 9823.0 (6249.0) 1777.0 (7973.2)
Wage 14-16 9838.0 (6280.0) 8721.0 (5383.0) 10658.0 (6748.0) 1937.0 (8632.0)
Wage 12-15 9214.0 (5807.0) 8209.0 (4993.0) 9959.0 (6239.0) 1750.0 (7990.9)

Table A2: Wages Summary Statistics

Note: The table presents the mean earnings for Hispanics and Whites across various periods,
spanning 8-16 years after high school graduation. For the period of 14-16 years post-graduation,
data is exclusively from the 2003-2004 cohort. For all other time frames, data includes all cohorts
from 2003-2004. Standard deviations are provided in parentheses.

Hispanics Whites

No College College No College College

Wage 1-2 2807.0 1904.0 2717.0 1693.0
(1785.0) (1351.0) (1910.0) (1340.0)

Wage 3-4 3903.0 2903.0 3935.0 2862.0
(2465.0) (2070.0) (2808.0) (2248.0)

Wage 5-7 4880.0 5027.0 5388.0 5983.0
(2984.0) (3128.0) (3550.0) (3693.0)

Wage 8-10 6234.0 7238.0 7237.0 8775.0
(3973.0) (4209.0) (4757.0) (4961.0)

Wage 10-12 7066.0 8468.0 8299.0 10285.0
(4403.0) (4762.0) (5364.0) (5808.0)

Wage 12-14 7750.0 9424.0 9201.0 11452.0
(4804.0) (5258.0) (5918.0) (6512.0)

Wage 14-16 8360.0 10180.0 9973.0 12447.0
(5236.0) (5736.0) (6441.0) (7211.0)

Wage 12-15 7862.0 9596.0 9327.0 11618.0
(4849.0) (5325.0) (5978.0) (6616.0)

Table A3: Wages Summary by College Statistics

Note: The table presents the mean and standard deviation earnings for Hispanics and Whites
across various periods after high school graduation For the period of 14-16 years post-graduation,
data is exclusively from the 2003-2004 cohort. For all other time frames, data includes all cohorts
from 2003-2004. Standard deviations are provided in parentheses.
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All Hispanic Whites

No Controls -0.0156 -0.0232 -0.0436

(0.0054) (0.0053) (0.0038)

Ind. Controls -0.0277 -0.0151 -0.0392

(0.0044) (0.0066) (0.0045)

+ School Char. -0.0061 0.0074 -0.0177

(0.004) (0.0057) (0.004)

+ Neighborhood Char. -0.0014 0.0009 -0.0036

(0.0018) (0.0022) (0.0021)

Table A4: Instrument Diagnostics

Note: The table displays coefficients on distance to a 4-year college, derived from a regression

of test score factors, as defined in section 3, on distance to college. Each row introduces additional

controls for individual student characteristics, school characteristics, and neighborhood character-

istics. Standard errors, provided in parentheses, are clustered at the school-cohort level.

All Hispanic Whites

No Controls -0.0008 -0.0007 -0.0013
(0.0001) (0.0002) (0.0001)
317278 136581 180697

Ind. Controls -0.0008 -0.0006 -0.0011
(0.0001) (0.0001) (0.0001)
317278 136581 180697

+ School Char. -0.0014 -0.001 -0.0019
(0.0002) (0.0002) (0.0002)
317278 136581 180697

+ Neighborhood Char. -0.0016 -0.0023 -0.0012
(0.0002) (0.0003) (0.0002)
317278 136581 180697

Table A5: First Stage
Note: The table presents the first-stage regression results, analyzing the effect of distance to

a 4-year college on college attendance in the first year post-graduation. Each row adds additional
controls for individual student characteristics, school characteristics, and neighborhood character-
istics, as defined in section 3. Standard errors are given in parentheses and are clustered at the
school-cohort level.
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All Hispanic Whites

Wage Avg 8-10 10-12 12-14 14-16 8-10 10-12 12-14 14-16 8-10 10-12 12-14 14-16

No Controls 7.2078 3.1346 -0.6775 -3.4851 6.7659 4.1617 1.9655 1.4303 3.362 -3.329 -9.8946 -15.7508
(1.5094) (1.4327) (1.4515) (1.8191) (1.5053) (1.2071) (1.1988) (1.5494) (1.2177) (1.4513) (1.6605) (2.2097)

Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227
Ind. Controls 4.9314 0.5937 -3.5101 -6.5359 5.8931 3.3429 1.2646 0.7636 4.1198 -2.1051 -8.4963 -14.2128

(1.0258) (0.946) (1.0365) (1.4211) (1.4953) (1.2306) (1.1954) (1.5131) (1.1556) (1.3397) (1.5095) (1.9959)
Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227
+ School Char. -1.7881 -2.9513 -4.1313 -5.7861 -1.7207 -1.0352 -0.8267 -0.6872 -1.758 -4.7777 -7.6157 -11.5689

(1.2276) (1.2815) (1.3991) (1.8907) (1.384) (1.4014) (1.5289) (2.0046) (1.4649) (1.7076) (1.8884) (2.5429)
Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227
+ Neighborhood Char. -0.504 -1.7866 -3.2171 -5.9322 -1.9984 -0.8557 -0.7281 -1.1675 1.6792 -0.7804 -3.5928 -8.7372

(1.6783) (1.9833) (2.2052) (2.8903) (2.4266) (2.8765) (3.114) (4.094) (2.1061) (2.4762) (2.7454) (3.6005)
Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227

Table A6: Reduced Form
Note: The table presents the reduced-form results of regressing the distance to a 4-year college

on earnings for the periods 8-10, 10-12, and 14-16 years after high school graduation. Each row
incorporates additional controls for individual student characteristics, school characteristics, and
neighborhood characteristics, as defined in Section 3. For all periods, the data includes the three
cohorts from 2003-2005. Specifically for the 14-16 year period, only the 2003-2004 cohorts are used.
Standard errors, provided in parentheses, are clustered at the school-cohort level.

Hispanics Coefficient

0 Baseline -0.0891 (0.0092)

1 + Neighborhood Char. -0.1317 (0.0046)

2 + Individual Chars. -0.0867 (0.0039)

3 + School Char. -0.0776 (0.0038)

4 + Test Score -0.0428 (0.0035)

Table A7: College Attendance Gap

Note: The table displays the coefficient for Hispanics from a regression analysis, where the de-

pendent variable is an indicator of first-time college attendance and the independent variable is the

indicator of being Hispanic. Each row adds additional controls. The first row represents the raw

difference with a cohort fixed effect. Subsequent rows include additional controls for individual stu-

dent characteristics, school characteristics, and neighborhood characteristics, as defined in Section

3. Standard errors are shown in parentheses and are clustered at the school-cohort level.
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Grades X College R2 N

Wage 12-14 All 15.88 0.17 236092
(1.35)

Wage 12-14 Hispanics 12.59 0.15 100140
(1.89)

Wage 12-14 Whites 14.98 0.15 135952
(1.92)

Wage 14-16 All 16.16 0.18 151336
(1.8)

Wage 14-16 Hispanics 11.26 0.16 63734
(2.58)

Wage 14-16 Whites 15.56 0.16 87602
(2.61)

Wage 12-15 All 15.74 0.17 240692
(1.36)

Wage 12-15 Hispanics 12.74 0.15 101854
(1.91)

Wage 12-15 Whites 14.86 0.16 138838
(1.89)

Table A8: Relation Between Earnings and Grades
Note: The table displays the coefficient on the interaction term for Exit Exam Grades and

College Attendance in the first year after high school graduation. Standard errors, presented in
parentheses, are clustered at the school-cohort level.

All Hispanics Whites

Ind Chr. 0.7 0.68 0.67

+ School Char. 0.72 0.71 0.71

+ Neighberhood Char. 0.75 0.75 0.74

+ Test Scores 0.78 0.8 0.77

N 321411 137551 183860

Figure A1: Area Under the Curve Analysis of Predicting College Attendance Decisions

Note: This table presents the Area Under The Curve (AUC) from a Probit model, predicting col-

lege attendance in the first year after high school among graduates. Each row progressively includes

additional controls. The first row incorporates individual characteristics, the second includes school

characteristics, the fourth integrates neighborhood characteristics, and the final row additionally

accounts for the test score factor. For a detailed description of these controls, refer to section 3.
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school matters? personal matters? career options? college options? high school rank? Top 10% rule?

Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites

Yes 0.65 0.63 0.26 0.23 0.56 0.45 0.61 0.58 0.48 0.54 0.26 0.33

(0.006) (0.007) (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) (0.007) (0.007) (0.006) (0.007)

No 0.21 0.19 0.42 0.36 0.31 0.33 0.29 0.26 0.40 0.33 0.55 0.45

(0.005) (0.006) (0.006) (0.007) (0.006) (0.007) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

Have not needed 0.13 0.17 0.31 0.41 0.12 0.22 0.09 0.15 0.10 0.12 0.17 0.21

(0.004) (0.006) (0.006) (0.007) (0.004) (0.006) (0.004) (0.005) (0.004) (0.005) (0.005) (0.006)

No response 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Weighted Obs 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774

Unweighted Obs 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621

Table A9: Sources of Information

Note: This table displays responses from Senior and Sophomore cohorts participating in the

Texas Higher Education Opportunity Project regarding the dissemination of information by school

counselors on the subjects indicated in the header. It quantifies the proportions of Hispanic and

White students who answered ”Yes,” ”No,” ”Not needed,” or did not respond. Standard errors are

in parentheses.

course selection personal problems school discipline jobs educational plans choosing a college college applications letters of rec. college essays financial aid job interviews

Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites

Three or more times 0.14 0.10 0.02 0.02 0.01 0.01 0.01 0.01 0.08 0.07 0.10 0.07 0.10 0.09 0.06 0.05 0.03 0.03 0.07 0.04 0.01 0.00

(0.005) (0.004) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.001) (0.001)

Twice 0.29 0.28 0.04 0.03 0.04 0.02 0.04 0.03 0.13 0.12 0.07 0.07 0.07 0.07 0.04 0.05 0.03 0.03 0.05 0.04 0.01 0.01

(0.006) (0.007) (0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.004) (0.005) (0.003) (0.004) (0.003) (0.004) (0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.001) (0.001)

Once 0.28 0.32 0.09 0.08 0.08 0.05 0.13 0.12 0.23 0.26 0.10 0.11 0.11 0.12 0.07 0.09 0.06 0.06 0.11 0.10 0.02 0.01

(0.006) (0.007) (0.004) (0.004) (0.004) (0.003) (0.004) (0.005) (0.006) (0.006) (0.004) (0.005) (0.004) (0.005) (0.003) (0.004) (0.003) (0.004) (0.004) (0.004) (0.002) (0.002)

Never 0.19 0.21 0.82 0.85 0.84 0.89 0.80 0.81 0.50 0.51 0.15 0.19 0.14 0.17 0.25 0.26 0.30 0.33 0.18 0.25 0.38 0.42

(0.005) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.007) (0.007) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.007) (0.005) (0.006) (0.006) (0.007)

No response 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Weighted Obs 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774

Unweighted Obs 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621

Table A10: Number of Interactions with School Councilor

Note: This table presents responses from Senior and Sophomore cohorts involved in the Texas

Higher Education Opportunity Project, detailing the frequency of their interactions with the school

counselor in the past year regarding the topics listed in the header. It quantifies the proportions of

Hispanic and White students who indicated their interactions as ”Three or more times,” ”Twice,”

”Once,” ”Never,” or did not respond. Standard errors are provided in parentheses.
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Education Important Issues Job Relationships Finance

Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites

Often 0.42 43.00 0.39 47.00 0.39 37.00 0.36 28.00 0.27 43.00

(0.50) (0.36) (0.49) (0.37) (0.49) (0.31) (0.48) (0.22) (0.45) (0.34)

Sometimes 0.44 58.00 0.39 61.00 0.43 67.00 0.51 67.00 0.56 54.00

(0.50) (0.49) (0.49) (0.48) (0.50) (0.56) (0.51) (0.53) (0.50) (0.42)

Never 0.13 18.00 0.22 20.00 0.17 16.00 0.13 32.00 0.18 31.00

(0.34) (0.15) (0.42) (0.16) (0.38) (0.13) (0.34) (0.25) (0.39) (0.24)

Num Obs 58.00 144 54.00 155 56.00 141 55.00 123 49.00 140

Table A11: Number of Interactions with Parents

Note: This table presents data from the National Longitudinal Survey of Youth 1997 (NLSY97),

focusing on participants’ responses to questions regarding the frequency with which they discuss

the topics listed in the header with their mother or father. It illustrates the proportion of times

participants reported discussing these topics ”often” with at least one parent, ”sometimes” with at

least one parent, or ”never” with both parents. Standard errors are provided in parentheses.

Baseline Ability Ability + Parental Income Ability + Parental Income + Parental Educ Ability + Parental Income + Parental Educ+ Grades

R2 R2 −Adj. N R2 R2 −Adj. N R2 R2 −Adj. N R2 R2 −Adj. N R2 R2 −Adj. N

All 0.139 0.137 3568.0 0.153 0.150 2965.0 0.163 0.159 2092.0 0.158 0.151 1490.0 0.135 0.117 910.0

Whites 0.129 0.126 2554.0 0.137 0.134 2192.0 0.150 0.145 1578.0 0.147 0.138 1185.0 0.123 0.102 749.0

Hispanics 0.131 0.125 1014.0 0.183 0.174 773.0 0.204 0.189 514.0 0.234 0.202 305.0 0.289 0.205 161.0

Whites- No College 0.085 0.081 1404.0 0.106 0.100 1171.0 0.122 0.112 848.0 0.132 0.115 587.0 0.148 0.097 284.0

Whites - College 0.046 0.041 1150.0 0.057 0.050 1021.0 0.080 0.068 730.0 0.093 0.076 598.0 0.105 0.073 465.0

Hispanics- No College 0.083 0.076 757.0 0.116 0.105 569.0 0.145 0.124 382.0 0.180 0.135 215.0 0.300 0.172 104.0

Hispanics - College 0.048 0.025 257.0 0.113 0.081 204.0 0.104 0.038 132.0 0.177 0.061 90.0 0.250 -0.050 57.0

Table A12: NLSY97 - R2

Note: This table uses data from the National Longitudinal Survey of Youth 1997 (NLSY97),

focusing on students who were 16 and 17 years old in 1997, to show the prediction quality of

their income in 2015 using pre-decision variables. It presents the R2 and adjusted R2 values, from

regression for All, Hispanics and whites and by college attendance. The ”Baseline” column accounts

for social group, gender, birth year, and college attendance. Subsequent columns incrementally

introduce additional variables: the ”Ability” columns include ASVAB test results; the third column

incorporates household income data; the fourth column integrates information on parental education

levels; and the final column incorporates high school grade information.
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Information Channel Returns Channel

1) µρ = 0 -0.077 (-97.116%) 0.156 (197.0%)

2) All Possible R2
1

LB, CF= 0.41 -0.121 (-152.532%) 0.2 (253.0%)

Whites Support, R2
1 = 0.01 [−0.9, 0.89]

Hispanics Support, R2
1 = 0.6 [0.62, 0.73]

UB, CF= 0.243 0.046 (57.807%) 0.033 (42.193%)

Whites Support, R2
1 = 0.75 [0.8, 0.87]

Hispanics Support, R2
1 = 0.1 [−0.9, 0.89]

3) R2
1 ≤ 0.3

LB, CF= 0.369 -0.079 (-100.15%) 0.159 (200.0%)

Whites Support, R2
1 = 0.01 [−0.9, 0.89]

Hispanics Support, R2
1 = 0.24 [−0.56, 0.89]

UB, CF= 0.342 -0.053 (-66.8%) 0.132 (167.0%)

Whites Support, R2
1 = 0.25 [−0.42, 0.89]

Hispanics Support, R2
1 = 0.1 [−0.9, 0.89]

4) R2
1 ≤ 0.5

LB, CF= 0.378 -0.089 (-112.35%) 0.169 (212.0%)

Whites Support, R2
1 = 0.01 [−0.9, 0.89]

Hispanics Support, R2
1 = 0.34 [−0.27, 0.89]

UB, CF= 0.325 -0.036 (-45.38%) 0.115 (145.0%)

Whites Support, R2
1 = 0.41 [−0.06, 0.89]

Hispanics Support, R2
1 = 0.1 [−0.9, 0.89]

5) Unrestricted Mean Beliefs

LB, CF= 0.456 -0.167 (-209.918%) 0.246 (310.0%)

Whites µρ 0.89

Hispanics µρ -0.9

UB, CF= 0.189 0.1 (126.0%) -0.021 (-25.952%)

Whites µρ -0.9

Hispanics µρ 0.89

Table A13: Main Decomposition - Extended

Note: This table provides additional information on the support and R2
1 that achieve the bounds

in Table 4. Row 1 shows our main results, the decomposition of the choice gap into the information

channel and returns channel. Rows 2-4 show the upper bound (UB) and lower bound (LB) of

the information channel under the different assumptions on the quality of information individuals

have on their college earnings (R2
1), as discussed in the main text. In each row, the table shows

the support of ρ’s that are induced by the R2
1 for whites and Hispanics for both the UB and LB.

The bounds on the Counterfactual (CF) share of whites who would go to college if they had the

information quality of Hispanics are shown for each case. Row 5 shows the lower and upper bounds

of the information channel and returns channel in the case where we only restrict the mean prior

beliefs to lie on the feasible set ρ, without restriction on R2
1. For both the LB and UB, the table

shows the mean µρ for each group that attained these bounds.
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C Identification

C.1 Proof of Proposition 1

In this section we prove proposition 1 in the main text text. We note that that the proof

here is for the empircal specifciation, introduced in section 2.5, but the proof can trivially

be extended to the non-parametric case outlined in C.2.

Proposition 1 Fix R2
1. A ρ is feasible from the high school graduate perspective if and

only if it is feasible from the Econometrician’s perspective.

Before proving the main proposition, we first show the following lemma.

Lemma 2. Let R2
1 be fixed. Consider the covariance matrix CE(ρ) associated with the

random variables U1, U0, E[U1|S], and E[U0|S]. The matrix CE(ρ) is defined as:

CE(ρ) =


σ2
U1

ρσU1σU0 σU1,E[U1|S] σU1,E[U0|S]

ρσU0U1 σ2
U0

σU0,E[U1|S] σU0,E[U0|S]

σE[U1|S],U1 σE[U1|S],U0 σ2
E[U1|S] σE[U1|S],E[U0|S]

σE[U0|S],U1 σE[U0|S],U0 σE[U1|S],E[U0|S] σ2
E[U0|S]

 , (7)

where σ2
X denotes the variance of X, σX,Y denotes the covariance between X and Y , and ρ

is the correlation coefficient between U1 and U0. All elements of CE(ρ) are identified except

for ρ.

Proof. The identification of σ1 and σ0, Var(E[U1−U0|S]), Cov(Ud, E[U1−U0|S]) are shown in

the main text. We proceed in showing identification of the other components. Identification

of σ2
E[U1|S] stems from the equality σ2

E[U1|S] = R2
1σ

2
1. Then, notice that

Cov(U1,E[U1 − U0|S]) = Cov(U1,E[U1|S])− Cov(U1,E[U0|S])

= σ2
1R

2
1 − Cov(U1, E[U0|S])

where the second equality follows from the fact that Cov(U1,E[U1|S]) = Var(E[U1|S]) =

σ2
1R

2
1. We therefore can identify Cov(U1, E[U0|S]). Next, we show that Cov(E[U1|S], E[U0|S])
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is identified. Notice that agents in the model utilize identical signals in predicting both U1

and U0 and that within the Gaussian model, the posterior mean is a linear function of the

signals, which leads us to the following:

Cov(U1,E[U0|S]) = Cov(E[U1|S] + ν,E[U0|S]) = Cov(E[U1|S],E[U0|S]),

where ν is the the residual from projecting U1 on S and satisfy Cov(ν,S) = 0 Next, to

identify R2
0, notice that we can write the identified beliefs variance, σ2

E, as:

σ2
E = Var(E[U1 − U0|S])

= Var(E[U1|S]) + Var(E[U0|S])− 2Cov(E[U1|S], E[U0|S])

= σ2
1R

2
1 + σ2

0R
2
0 − 2Cov(E[U1|S], E[U0|S]).

which also allows us to identify σ2
E[U0|S]. Next, using an equivalent argument to the iden-

tification of Cov(U1, E[U0|S), and R2
0, we identify Cov(U0, E[U1|S]). Finally to identify

Cov(Ud,E[Ud|S]) we have the following equality:

Cov(Ud,E[Ud|S]) = Var(E[Ud|S]) = σ2
dR

2
d.

which concludes the proof.

We now proceed to prove proposition 1.

Proof. Fix ρ, and let CS(ρ) be the implied covariance matrix of the signal vector S and

potential earnings U1 and U0

CS(ρ) =



σS1,S1 · · · σS1,Sn σS1,U1 σS1,U0

...
. . .

...
...

...

σSn,S1 · · · σSn,Sn σSn,U1 σSn,U0

σU1,S1 · · · σU1,Sn σ2
1 ρσ0σ1

σU0,S1 · · · σU0,Sn ρσ0σ1 σ2
0


,

and let CE(ρ) be the covariance matrix between marginal beliefs, E[U1|s], E[U0|s] and po-

74



tential earnings, U1 and U0

CE(ρ) =


σ2
E1

σE1,E0 σE1,U1 σE1,U0

σE0,E1 σ1
E0

σE0,U1 σE0,U0

σU1,E1 σU1,E0 σ2
1 ρσ1σ0

σU0,E1 σU0,E0 ρσ1σ0 σ2
0

 .

We next demonstrate that CS(ρ) is positive semi-definite (PSD) if and only if CE(ρ) is

PSD. Without loss of generality, we focus on scenarios where signals are independent and

possess unit variance. This approach is without loss, as for any feasible ρ, we can always

residualize and rescale the signals, thereby maintaining their information content unchanged.

We start by showing that if CE(ρ) is PSD, then matrix CS(ρ) is also PSD. We consider the

contrapositive case and show that if matrix CS(ρ) is not PSD, then CE(ρ) is not PSD.

Assume CS(ρ) not PSD. Then, there exists a vector t such that t′CS(ρ)t < 0. Denote tsi the

value in vector t that corresponds to signal si. and by t1 and t0 the value in vector t that

correspond to U1 and U0. Using the fact that signals are uncorrelated, we can write

t′CS(ρ)t =
∑
i

t2si + t1

(∑
σsi,1tsi

)
+ t0

(∑
σsi,0tsi

)
+ σ2

1t
2
1 + σ2

0t
2
0 + 2ρσ0σ1t1t0 < 0 (8)

We now show that there must exists a vector k, such that k′CE(ρ)k < 0. Denote kEd
, k1 and

k0, similar to before, then

k′CE(ρ)k = 2k1(σ
2
E1
kE1 + σE1,E0kE0)

+ 2k0(σ
2
E0
kE0 + σE1,E0kE1)

+ (2σ1,0kE1kE0 + σE1k
2
E1

+ σE0k
2
E0
)

+ σ2
1k

2
1 + σ2

0k
2
0 + 2ρσ1σ0k1k0

As we restricted attention to the case where signals are uncorrelated and unit variance, and

the conditional distribution of Gaussian model is linear function of signals, we can rewrite
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these expressions as

k′CE(ρ)k = 2k1(kE1

∑
si

σ2
si,1

+ kE0

∑
si

σsi,1σsi,0)

+ 2k0(kE0

∑
si

σ2
si,0

+ kE1

∑
si

σsi,1σsi,0)

+ (2kE1kE0

∑
si

σsi,1σsi,0) + k2
E1

∑
si

σ2
si,1

+ k2
E0

∑
si

σ2
si,0

)

+ σ2
1k

2
1 + σ2

0k
2
0 + 2ρσ1σ0k1k0

= 2k1(
∑
si

σsi,1(σsi,1kE1 + σsi,0kE0))

+ 2k0(
∑
si

σsi,0(σsi,0kE0 + σsi,1kE1))

+
∑
si

(σsi,1kE1 + σsi,0kE0)
2

+ σ2
1k

2
1 + σ2

0k
2
0 + 2ρσ1σ0k1k0

We now show how to find values of the vector k that makes this expression negative. We

set k1 = t1 and k0 = t0. We use the additional two values of k to equate the remaining

values such that k′CE(ρ)k = t′CS(ρ)t < 0. To do so, we notice we have two equation for two

parameters

2
∑
si

(σsi,1kE1 + σsi,0kE0))(k1σsi,1 + k0σsi,0) =
∑
si

tsi(k1σsi,1 + k0σsi,0) (9)

and ∑
si

(σsi,1kE1 + σsi,0kE0)
2 =

∑
i

t2si (10)

Using the first equation, we can then solve for kE1 in terms of known values and kE0

kE1 =
1
2

∑
si
tsi(k1σsi,1 + k0σsi,0)− kE0(k1σsi,1 + k0σsi,0)∑

si
σsi,1

plug this back into equation 10, we see that we have continuous function of kE0 . This function
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goes from from 0 to infinity, the right hand side is a finite and positive expression, then by

the Intermediate value theorem there exists a solution, which implies that there exists a

vector for which k′Bk < 0 and B is not PSD. To show the reverse, we can follow the steps

in reverse, and show that that if CE(ρ) is not PSD then CS(ρ) is not PSD as well, which

concludes the proof.

C.2 Nonparametric Identification of the Choice Model

We explore the non-parametric identification of choices. First, we identify the distribution of

structural components, α1 and α0, by leveraging panel data, an instrumental variable, and

specific wage structure assumptions. Next, we establish the identification of both the cost

function and the beliefs distribution. While panel data aids in identifying α1 and α0. This

step can be skipped if one assumes that outcomes are observed without measurement error.

In our analysis, we work under the assumption that the researcher has access to a ran-

dom, independently and identically distributed sample of observations, each denoted by

(Ya,i, Di, Xi, Zi). All analyses are conditional on the covariates vector X, so we omit the X

notation for simplicity.

C.2.1 Identification of P (α1,E[α1 − α0|S]), P (α0,E[α1 − α0|S]) and the Threshold

Function

We impose the following assumptions on the wage data generating Process. Wages are set

according to

Yi,a = Di(α1 + ϵ1i,a) + (1−Di)(α0 + ϵ0i,a))

where Yi,a is individual i’s income at age a, Di is a dummy variable indicating whether the

HG i attended four years college or not. One can think of αd as individual fixed effect, if

that individual goes to college or not. We further impose the following assumptions on the

wage process

Assumption 1. (1) for all a we have E[ϵDi,a|αD] = 0 (2) α1, α0 ⊥⊥ ϵDi,a and (3) there exist at

least two periods aD, a′D for each D ∈ {0, 1} such that ϵDi,a ⊥⊥ ϵDi,a′
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Denote by P (Z) = E[D = 1|Z] the propensity score conditional on Z. We then employ

the following assumption

Assumption 2. The characteristic functions of the conditional distribution α1|D = 1, P (Z) =

p, α0|D = 1, P (Z) = p, ϵDi,a|D = 1, P (Z) = p and ϵDi,a′ |D = 1, P (Z) = p are non vanishing

The first part of Assumption 1 is standard and implies that any constant is absorbed

into αD, ensuring that deviations from the structural component are independent of the fixed

effects. The second restriction mandates the existence of at least two periods in which the

shocks are mutually independent, given the covariates X. While this condition is restrictive,

it accommodates complex correlation structures, such as finite moving averages or other

forms of multi-period correlations. The Assumption 2 stipulates that the characteristic

functions of the conditional distributions for α1|D = 1, P (Z) = p, α0|D = 1, P (Z) = p,

ϵDi,a|D = 1, P (Z) = p, and ϵDi,a′|D = 1, P (Z) = p are non-vanishing12. This is a standard

assumption that is used for nonparametric identification of factor models and assures us that

we can use the characteristic functions to back-out the distribution of αd.

Next, we impose restrictions on the agent information set. In the spirit of rational

expectations, we assume that there are two parts to wages; a structural component, on

which individuals have information on, and an unpredictable shock component that is not

known to the high school gradutes.

Assumption 3 (Information Restriction). The signals individuals obtain do not contain any

information on the non structural part of the wage, ϵ1i,a, ϵ
0
0.

Si ⊥⊥ ϵ1i,a, ϵ
0
i,a|α1, α0

This implies that individuals can only receive information on the structural component

of the wage, but may not have information on time varying shocks. Finally we impose the

following assumptions on the instrument Z

Assumption 4 (Instrument Restrictions). We assume that the instrument satisfies the fol-

lowing conditions

12The non vanishing assumption can be further relaxed, as shown in Evdokimov and White (2012)
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1. ϵ1i,a, ϵ
0
i,a, α1, α0 ⊥⊥ Z

2. S ⊥⊥ Z|α1, α0

3. Z is continuously distributed on Z ⊆ R

4. E[α1 − α0|s] continuously distributed

5. c(Z) is differentiable with respect to z and covers the entire support of E[α1 − α0|S]

The assumptions are akin to standard Instrumental Variable (IV) assumptions (Heckman

and Vytlacil (2005)), but they incorporate additional structure through the modeling of the

choice equation. The first assumption establishes the instrument’s independence from the

outcome variables. The second dictates that information is independent of the instrument,

conditioned on the structural components. Notably, these first two assumptions collectively

imply that Y1, Y0, E[α1(ti) − α0(ti)|S] ⊥⊥ Z, aligning with standard IV assumptions where

the selection variable is uncorrelated with the instrument. The final part of Assumption 4

is a technical requirement ensuring that we can recover the cost function by monitoring the

derivative, as demonstrated in the proof.

Denote E[α1 − α0|S] = E. We show the following proposition.

Proposition 2. Under assumptions (1)-(4), P (α1,E) ,P (α0,E) and the cost function c(z)

are identified

Proof. Let a, a′ be two periods such that ϵDi,a ⊥⊥ ϵDi,a. We start by showing how to identify

P(αd|E) First, using assumption 1, 3, and 4 we have that ϵDi,a ⊥⊥ α1|p(Z) = p,D = 1 as

P(ϵDi,a, α1|p(Z) = p,D = 1) = P(ϵDi,a, α1|p(Z) = p,E ≥ c(z))

= P(ϵDi,a|α1, p(Z) = p,E ≥ c(z))P(α1|p(Z) = p,E ≥ c(z))

= P(ϵDi,a|p(Z) = p,E ≥ c(z))P(α1|p(Z) = p,E ≥ c(z))

= P(ϵDi,a|p(Z) = p,D = 1)P(α1|p(Z) = p,D = 1)

where the first equality stems from the choice model, the second stems from Bayes rule, and

the third equality is due to the contraction rule and the decomposition rule of conditional
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Independence. We have an equivalent result for α0 and ϵi,a′ . Last, notice that as ϵi,a ⊥⊥ ϵi,a′ ,

ϵi,a, ϵi,a′ ⊥⊥ mR(s) and ϵi,a, ϵi,a′ ⊥⊥ Z we have that ϵi,a ⊥⊥ ϵi,a′ |p(Z) = p,D = 1

Therefore ϵDi,a and ϵDi,a′ and αD are mutually independent, conditional on D and P , and we

can now utilize Kotlarski’s Lemma (1967) to identify the conditional distribution of α1 and

α0. We first show how to identify the conditional distribution of α1. Let Ψ(ya, ya′) be the

conditional characteristic function of (Yi,a, Yi,a′) given (P (z) = p,D = d). Let Ψα1(t),Ψϵa(t)

and Ψϵ′a(t) be the conditional characteristic functions of α1, ϵi,a, ϵi,a′ , given (P (z) = p,D =

d), then we can show that (Rao (1992), page 21 and Gilraine et al. (2020))

logΨα1(t) = iE[α1|D = 1, P (Z) = p]t+

∫ t

0

∂

∂ya

(
log

Ψ(ya, ya′)

Ψ(ya, 0)Ψ(0, ya′)

)
ya=0

dya′

Noticing that

∂

∂ya

(
log

Ψ(ya, ya′)

Ψ(ya, 0)Ψ(0, ya′)

)
ya=0

=

∂Ψ(0,ya′ )
∂ya

Ψ(0, ya′)
− iE[Yi,a|D = 1, P (Z) = p]t

and that by assumptions 1 and 3 we have iE[Yi,a|D = 1, P (Z) = p]t = iE[α1|D = 1, P (Z) =

p] we then get

logΨα1(t) =

∫ t

0

∂Ψ(0,ya′ )
∂ya

Ψ(0, ya′)
dya′

as the characteristic function fully defines the distribution and Ψ(ya, ya′) is observed in the

data, we have identified P(α1|D = 1, P (z) = p). Similar argument shows that we can identify

P(α0|D = 0, P (z) = p).

Next, denote by Fα1(·|D = 1, P (Z) = p) the conditional CDF of α1. Denote by V =

FE(E) the quantile of the beliefs in the beliefs distribution. Then following the arguments

in Carneiro and Lee (2009) we have that for all k on the support of α1 we have that

Fα1(k|P (z), D = 1) = E[1{α1 ≤ k}|P (Z) = p,D = 1] = E[1{α1 ≤ k}|P (Z) = p, V > p(Z)]

=
1

p

∫ 1

1−p

E[1{α1 ≤ k}|V = v]dv
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rewriting the equation gives us

pE[1{α1 ≤ k}|P (Z) = p,D = 1] =

∫ 1

1−p

E[1{α1 ≤ k}|V = v]f(v)dv

Using assumption 4 we can take derivative from both sides, with respect to p, and get

E[1{α1 ≤ k}|V = 1− p] = E[1{α1 ≤ k}|P (Z) = p,D = 1] + p
E[1{α1 ≤ k}|P (Z) = p,D = 1]

∂p

Therefore we have that P(α1|V ) is identified. Following similar steps we have that

P(α0|V ) is also identified

E[1{α0 ≤ k}|V = 1− p] = E[1{α0 ≤ k}|P (Z) = p,D = 0]− (1− p)
E[1{α0 ≤ k}|P (Z) = p,D = 0]

∂p

Next, observe that we can construct the probabilities P (α1|E) and P (α0|E) using the law

of iterated expectations we have

e = E[α1−α0|E = e] = E[α1−α0|FE(E) = V ] =

∫
α1P (α1|V )dα1−

∫
α0P (α0|V )dα0. (11)

Therefore we can identify the inverse, F−1
E (V ), and consequently the CDF of beliefs,

FE(e). As the CDF is strictly increasing and therefore invertible, by assumption 4 we can

also identify P (α1|E) and P (α0|E) as needed. Therefore we’ve identified the joint P (α1,E)

and P (α0,E). Finally, to identify the cost function, observe that

P (z) = Pr(E > c(z)) = 1−F (c(z)) =⇒ F−1
E (1−P (z)) = F−1

E (F (c(z))) =⇒ F−1
E (1−P (z)) = c(z).

Finally, in order to identify the cost function, we notice that

P (z) = P(E > c(z)) = 1− F (c(z)) =⇒ F−1
E (1− P (z)) = F−1

E (F (c(z))) =⇒ F−1
E (1− P (z)) = c(z)

which concludes the proof.
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C.2.2 A Testable Implication

As discussed in Canay et al. (2020) and in Hull (2021), the choice model implies that the

Marginal Treatment effect (Heckman and Vytlacil (2005)) estimated using the instruments,

should be decreasing. To see that notice that we use 11 to identify the CDF of V , therefore,

if we get that this is not increasing function of v, this implies that our model is mispecificed.

In the Gaussian model we estimate in the text this amounts to requiring that

σE = γ1
c − γ0

c ≥ 0,

as σE standard error.

D Estimation

We now turn to describe how we estimate the Gaussian choice model. We first start by

estimating α1 and α0 by averaging wages over periods of time

α̂di =
1

T − t

T∑
a=t

Y d
i,a

Then, given our α̂1 and α̂0, we estimate the model in three steps. In the first step, we

estimate the propensity score using a Probit model, the covariates X, and the instrument

Z. In the second step, we use the Heckman control function approach (Heckman (1979)) to

estimate β1 and β0. As discussed in the previous section, we obtain the standard deviation of

beliefs from the coefficients on the control function. Next, we show how we can estimate the

cost function. Using equation 4, we see that the Probit regression coefficients, standardized

by the standard deviation of beliefs, are impacted by both beliefs and costs. To adjust for

this, we rescale the coefficients and add the conditional expectations, estimated using the

control function approach:

ĉ(x, z) = σ̂η × (zb̂z + xb̂x) + x(β̂1 − β̂0).
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Finally, to get σ1 and σ0, we solve the maximum likelihood function as shown in equation 5.

To our measure of information contribution to the gap we simply calculate the R̂2, as

discussed in 2.3 for both groups. We then estimate the information channel as

P̂ (D = 1|b, x)︸ ︷︷ ︸
Observed

− 1

N

∑
i

Φ

x(β̂1 − β̂0)− ĉ(xi, zi)√
σ̂2
RR̂

2
a


︸ ︷︷ ︸

Counterfactual

,

where the first part is just the observed share and the second part is the counterfactual share

of individuals who choose to attend, if they had the same R2 as group a. To estimate this part

we simply average over Φ

(
x(β̂1−β̂0)−ĉ(xi,zi)√

σ̂2
RR̂2

a

)
for all the observation of group b. Estimation of

the composition channel is done the same.

E Another Measure for Information Differences - Equat-

ing Information Structure Across Groups

E.1 Decomposition - The Role of Differences in Information Struc-

tures

In the main text we considered two ways to measure the role of information frictions on choice.

We now consider an additional one that aims to equate the information structure across

groups. Information structure is a tuple S = (P (s|R), S) containing a set of conditional

density function, that describes the probability of observing signal s, for an individual with

return R, and the support of these signals S. Information structures are widely used in

economics and captures the mapping between the the state variables and beliefs (Bergemann

and Morris (2016),Bergemann and Morris (2019)). In the following exercise we want to

understand how the fact that different groups have access to different information structures,

affect the choice gap. We therefore consider equating the information structure across the

two groups. We then preform similar decomposition exercise as we did in section 2.4. In

this decomposition exercise we decompose the choice gap to differences in choice that are
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attributed to differences arising from differences in the information structure and differences

in the returns distribution:

P (D = 1|Group b)− P (D = 1|Group a)︸ ︷︷ ︸
Total Effect

=

P (D = 1|Group b)− P (D = 1|Group b with information structure of Group a)︸ ︷︷ ︸
Information Channel

+P (D = 1|Group b with information structure of Group a)− P (D = 1|Group a)︸ ︷︷ ︸
Composition Channel

=

∫
R×c

P(Eb,b(s) ≥ c|R, c, b)πb(R, c)dRdc−
∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R, c)dRdc︸ ︷︷ ︸
Information Channel

+

∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R, c)−
∫
R×c

P(Ea,a(s) ≥ c|R, a)πa(R, c)dRdc︸ ︷︷ ︸
Composition Channel

,

where

Ea,a(s) =

∫
R
R P (s|R, a)× πa(R)∫

R̃ P (s|R̃, a)× πa(R̃)dR̃
dR

is simply the beliefs of group b, when they have access to information of group b and prior

of group b,13 and

Ea,b(s) =

∫
R̃
R̃

Information︷ ︸︸ ︷
P (s|R̃, a)×

earnings︷ ︸︸ ︷
πb(R̃)∫

P (s|R̃, a)πb(R̃)dR̃
dR̃

is a counterfactual beliefs for group of members b, is they have the information structure of

group a, but returns distribution of group b.

The information channel measures the extent to which the gap in choices would change

if both groups had access to the same information structure as group a. Disparities in

information structure can arise from various environmental factors affecting the decision-

maker. For instance, if members of group b typically have more academically inclined parents

than those in group a, they are likely to receive more accurate information about the benefits

13Remember that we assume rational expectations, hence the prior is the true distribution of returns
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of college for an individual, thus providing clearer signals about potential earnings post-

college. Additionally, if the social networks of group b members are closely connected to a

specific industry that requires certain information, this could create differences in individuals’

abilities to predict returns. Therefore, the information channel quantifies the extent of the

gap in choices that is attributable to individuals in the two groups receiving different signals,

despite having equal potential returns.

It’s essential to note two things. First, the information structure captures not only ’mea-

surement’ type signals, of the form Signal = True value+Measurement Error, as commonly

seen in the literature, but also incorporates more sophisticated cases, that incorporate what

individuals know and understand about the data-generating process. Second, in our decom-

position exercise, we impose that individuals update their beliefs correctly. They use the new

signals and their correct priors to adjust their understanding. In other words, we examine

how they would update their beliefs knowing that the distribution of signals they receive

comes from a new source.

The following examples demonstrate two points. First, how information structure incor-

porates the underlying data generating process that govern the returns, and is not simply a

”measurement error” type signals. Second, the example shows that what’s important is not

equating the access to signals, but equating the meaning that these signals have, captured

by the information structure.

Example E.1 (Occupation and Earnings). The informational content of the signals individ-

uals might be more dependent on the structure of the economy itself. For instance, consider

the case where the earnings of non-college-goers are zero for both members of groups a and b,

and there are two occupations in the economy: lawyers and accountants. Both lawyers and

accountants are paid either a high or low wage, H > 0 > L, with equal probability. Prior to

deciding to go to college, individuals receive an informative signal on their potential returns

if they end up being lawyers. Denote these signals as H̃law and L̃law. The distributions of

occupations, earnings, and the signal for each group are given below.
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Group b Group a

H L

Lawyer
H̃law

6
20

× 5
6

6
20

× 1
6

L̃law
6
20

× 1
6

6
20

× 5
6

Accountant
H̃law

4
20

× 1
2

4
20

× 1
2

L̃law
4
20

× 1
2

4
20

× 1
2

H L

Lawyer
H̃law

4
20

× 5
6

4
20

× 1
6

L̃law
4
20

× 1
6

4
20

× 5
6

Accountant
H̃law

6
20

× 1
2

6
20

× 1
2

L̃law
6
20

× 1
2

6
20

× 1
2

Table A1: Demonstration of Information Structure

In this economy, the share of high earners and low earners is 1
2
for both groups. The

share of individuals in both groups with signals H̃law and L̃law is also 1
2
. Moreover, for both

groups, individuals who end up as lawyers and received a high signal have a 5
6
probability of

having high earnings. The only difference between the two groups is the share of individuals

who end up being lawyers, versus those ending up being accountants. This difference implies

that the signals each individual from each group receives have different information content,

generating differences in the distribution of beliefs. For members of group b, the information

structure is given by

P (H̃|H) = P (H̃|Lawyer, H)P (Lawyer|H) + P (H̃|Acc, H)P (Acc|H) =
7

10
(12)

P (H̃|L) = P (H̃|Lawyer, L)P (Lawyer|L) + P (H̃|Acc, L)P (Acc|L) = 3

10
(13)

Similarly, for members from group a we have

P (H̃|H) = P (H̃|Lawyer, H)P (Lawyer|H) + P (H̃|Acc, H)P (Acc|H) =
19

30
(14)

P (H̃|L) = P (H̃|Lawyer, L)P (Lawyer|L) + P (H̃|Acc, L)P (Acc|L) = 11

30
(15)

which implies that even when the marginal distribution of the signal and returns is the same,
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the implied beliefs given the same signal are different

mR⟨b,b⟩(H̃) = H × 7

10
+ L× 3

10
(16)

mR⟨a,a⟩(H̃) = H × 19

30
+ L× 11

30
(17)

Therefore, although the marginal distribution of signals and returns is the same in the

economy, the information structure is different, and the same signal would be interpreted

differently in both cases. What does it mean to switch the information structure between

group a and group b in this environment? In the thought experiment we perform here, we ask

what would be the observed behavior if we provided a signal with the same informational

content on the returns as the other group. In this sense, our decomposition approach is

”reduced form” in spirit, as we do not describe what drives the differences in information.

Instead, we explore the ways in which systemic differences in information on earnings are

provided to individuals and how they affect the observed gaps in behavior. These differences

can arise from various channels, some due to the way the economy is structured, others

might be due to differences in individuals, such as the ability to process information or the

financial ability to acquire information.

The following example shows that the same component can play a role as both a piece

of information and part of the data generating process of the outcomes.

Example E.2 (Knowledge of some structural components). In some cases, individuals may

know specific parts of the data-generating process of earnings. For example, assume that

the earnings are determined by a function with a known component to the decision-maker,

x, and some unknown component νd:

α1 = m1(x, ν1) (18)

α0 = m0(x, ν0) (19)

Here, x could represent known ability, latent cost of effort, or parental connections in the

labor market. In this case, the information structure is simply the probability of observing

x, given the earnings P (x|α1, α0). This assumption is common in economic models where we
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believe that some variables affecting the outcomes are known to the decision-makers while

making choices, and they use them to form beliefs about the outcomes. Therefore, in our

thought experiment of switching the information structure between groups, we separate the

two roles of x. Specifically, we fix the distribution of x in the population, thereby keeping

the distribution of earnings fixed. But we ask what would happen if the agent did not know

x, but instead had access to a similar information environment as group a, and how that

would change choice patterns.

We now proceed to explore the second component of decomposition - the composition

channel. We can express this channel as:

P⟨a|b⟩ − P⟨a|a⟩︸ ︷︷ ︸
Composition Channel

=

∫
α1,α0

P (mR⟨a,b⟩(s) ≥ 0|R, a)
π(R|b)
π(R|a)

π(R|a) (20)

−
∫
R
P (mR⟨a,a⟩(s) ≥ 0|R, a)π(R|a)dα1dα0 (21)

In the composition channel, we maintain the information structure of group a, yet re-

weight the population of group a to align with the distribution of group b. This thought

experiment explores how the share of college attenders from group a would change if we

modified the composition of the group, so that their distribution of earnings would align

with that of group b. In this counterfactual, we are not breaking the connection between

information and earnings, as we did in example 2.3, but merely shifting the proportion of

individuals at certain earnings levels, ensuring that they take the change into account while

forming their beliefs. As we alter the distribution of earnings, while keeping the information

structure fixed, we also modify the marginal distribution of signals within the population.

This means that if, for instance, we increased the proportion of potential students with high

R, we are also enlarging the population’s share of those receiving signals tied to higher

earnings. Consequently, maintaining the information structure fixed means that we are

transforming the distribution of signals in the population, but keep it’s meaning.

Example E.3 (Knowledge of some structural components-Continued). In this example,

the composition channel involves adjusting the share of members in group a with specific

earnings levels, to align with those from group b. It’s important to note that we are not
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necessarily equalizing the share of variable x between the two groups. If x represents, for

example, ability, and the function m(., ν) varies between groups, our hypothetical scenario

doesn’t balance the share of high and low ability across both groups. If m differs, matching

the share of high and low ability could result in significantly different distributions. Since

the HGs are not concerned with ability itself but as an indicator of their returns, aligning

individual parts across groups doesn’t provide insight into how the distribution of outcomes

influences choice.

Similar to our discussion in the main text, it’s crucial to understand that our analysis

offers a partial equilibrium perspective on changing information structure. The information

structure in many cases changes endogenously.For example, individuals may exert effort to

generate better information in response to the distribution of returns. It also may be that

differences in information could arise due to selection and equilibrium effects. For example,

if information influences labor market selection patterns, and employers respond to these

patterns, our counterfactuals won’t address this. Our analysis assumes that the existing

information structure is a given and demonstrates further details in the appendix.

E.1.1 Gaussian Scalar Interpretation

In the scalar Gaussian case we can write the decomposition explicitly as

P (D = 1|b)− P (D = 1|a) =
∫
X

Φ

µR,b,x − cb(x)√
σ4
R,b,x

σ2
R,b,x+σ2

ϵ,b,x

 dFb(x)−
∫
X

Φ

µR,b,x − cb(x)√
σ4
R,b,x

σ2
R,b,x+σ2

ϵ,a,x

 dFb(x)

︸ ︷︷ ︸
Information Channel

+

∫
X

Φ

µR,b,x − cb(x)√
σ4
R,b,x

σ2
R,b,x+σ2

ϵ,a,x

 dFb(x)−
∫
c

Φ

µR,a,x − ca(x)√
σ4
R,a,x

σ2
R,a,x+σ2

ϵ,a,x

 dFa(x)

︸ ︷︷ ︸
Composition Channel

Therefore, in the scalar Gaussian case, equating information structure across two groups

essentially means equalizing the level of uncertainty surrounding true returns.
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Remark. Notice that in our discussion here we fixed the information structure, as signals

conditional on returns. We did this, as returns are what agents care about, and for the

decision process they are indifferent between two pairs of earnings with the same difference.

Therefore from the perspective of the agents, the payoff relevant value for the decision is the

difference. Another approach can be to define the information structure on earnings. This

would imply a different interpretation of information.

In the following parts we discuss how this decomposition measure can identified under

different assumption on the data or the type of fundamentals and information.

E.2 Nonparametric point Identification of the Decomposition Com-

ponents

Fix two groups g ∈ {a, b}. In the subsequent sections, we demonstrate how to identify the

quantity

P⟨a,b⟩ =

∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R, c) (22)

required for decomposition. As outlined in Section C.2, the primary challenge lies in con-

structing the distribution of posterior means that incorporates both the counterfactual dis-

tribution of signals and returns. This must be achieved despite having access only to the

conditional expectations distribution, rather than the complete information structure avail-

able to agents. We first establish conditions for point identification, then extend our analysis

to more general cases for identifying this quantity. Throughout the analysis we assume that

π(c) is identified, and implicitly condition on the cost.

E.2.1 Point Identification Under Increasing Beliefs Function

We start by showing that if we are willing to assume that the information is scalar, and that

beliefs are increasing function of that signal, then the quantity in 22 is identified.

Proposition 3. Let E[R|s] be a strictly increasing function of s, then equation 3 is identified.

Proof. The claim follows trivially from the fact that a strictly monotonic transformation

is merely a renaming of the signal but does not alter its information content. Therefore,
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individuals update beliefs in the same manner, using either the information structure’s like-

lihood functions P (s|R) with support S or P (E[R|s]|R) with support given by the posterior

means, for any prior. To illustrate this in our continuous density of signals case, we have

Ea,b(s) =

∫
R Pa(s|R)πb(R)∫

Pa(s|R)πb(R)dR
dR =

∫
R

∣∣∣ 1
∂Ea
∂s

∣∣∣Pa(Ea|R)πb(R)∣∣∣ 1
∂Ea
∂s

∣∣∣ ∫ Pa(Ea|R)πb(R)dR
dR = E[R|Ea(s); b]

where Ea denotes the beliefs of group a, with their information structure and prior, and

E[R|Ea(s); b] is the belief induced by observing the signal Ea(s) and prior πb. As demon-

strated in section C.2, for a given correlation between α1 and α0, we can identify the joint

distribution of E[R|s] and R for groups a and b. Therefore, as each signal corresponds to a

unique belief, we can calculate the implied counterfactual beliefs distribution directly from

the identified distribution of beliefs. Consequently, P (Ea,b(s)|R) is identified, and equation

22 is trivially identified.

Under what conditions can we expect the conditional expectation to be a strictly increas-

ing function of returns? A sufficient condition for this is that the joint distribution of R
and s satisfies the Monotone Likelihood Ratio Property (MLRP). The following corollary

formalizes this claim.

Corollary 1. Let P (R, s) satisfy the strict Monotone Likelihood Ratio Property,

∀s > s′, x > x′ P (R|s)P (R′|s′) > P (R′|s)P (R|s′) (23)

then the quantity in equation 3 is identified.

Proof. The corollary follows from the preceding proposition and the fact that MLRP implies

First-Order Stochastic Dominance,

Fs(R) ≤ Fs′(R) (24)
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which implies that the conditional expectation is strictly increasing,

E[R|s] =
∫
R
(1− Fs(R)) dR >

∫
R
(1− Fs′(R)) dR = E[R|s′].

Here, Fs denotes the CDF of R, conditional on s.

E.2.2 Identification Under the General Gaussian Model

We reintroduce the Gaussian model as in section 2. Throughout the discussion, we fix

the cost c and make the identification argument conditional on c. Again, we assume that

individuals observe a scalar signal S, and the structural components of earnings α1, α0 are

drawn from a joint normal distributionS

α1

α0

 ∼ N


µs

µ1

µ0

 ,

ΣS,ΣS,1,ΣS,0

ΣS,1, σ1, σ1,0

ΣS,0, σ1,0, σ0




Using the properties of the normal distribution, we can write the joint distribution of the

signals and the returns, where R = α1 − α0, as(
S

R

)
∼ N

((
µs

µ1 − µ0

)
,

[
ΣS ΣS,R

ΣT
S,R σ2

1 + σ2
0 − 2σ1,0

])

Where ΣS,R = ΣS,1 − ΣS,0. Given a signal realization S, the information structure,

Pr(S|R), is then given by

Pr(S|R) = N
(
µS + ΣS,Rσ

−2
R (R− µR),ΣS − ΣS,Rσ

−2
R ΣT

S,R
)

An individual with signal realization S forms the following posterior mean:

E[R|S] = µR + ΣT
S,RΣ

−1
S (S − µS)

This implies that individuals i with cost c and signal realization S would choose to go to
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college if

D = 1 [E[α1 − α0|S] ≥ c] = 1
[
µR + ΣT

S,RΣ
−1
S (S − µS) ≥ c

]
We can calculate the share of students who attend college with cost c. First, we note that

the beliefs distribution is given by

E[R|S] ∼ N
(
µR,Σ

T
S,RΣ

−1
S ΣS,R

)
Therefore, the share of individuals who would go to college is given by

P (D = 1|c) = Φ

(
µR − c

ΣT
S,RΣ

−1
S ΣS,R

)

Now, again, we assume that individuals are divided into two groups g ∈ {a, b}. Fixing a

copula parameter between α1 and α0 for each group, and using results from section C.2,

we know we can identify the joint distribution of returns and beliefs for groups a and b,

Pa(R, E(s)) and Pb(R, E(s)). We now show that this is sufficient to identify the quantity in

3 and solve for the decomposition.

Given the information structure of group a, we can derive the counterfactual joint dis-

tribution of signals and returns as follows14(
Sa

Rb

)
∼ N

((
ka +maµSa

µRb

)
,

[
maσ

2
bma

T + ΣSa −maΣ
T
Sa,Rb

maσ
2
Rb

ma
Tσ2

Rb
σ2
Rb

])

where ka = µSa −ΣSa,Rb
σ−2
Rb
µRb

and ma = ΣSa,Rb
σ−2
Rb

and subscript g ∈ {a, b} indicates that

the parameters are from the distribution of group g.

We can now derive the counterfactual posterior mean belief, given a signal realization S.

Ea,b = µb +mT
a σ

2
Rb

(
ΣSa,Raσ

−2
Ra

σ2
Rb
σ−2
Ra

ΣT
Sa,Ra

+ ΣSa − ΣSa,Raσ
−2
Ra

ΣT
Sa,Ra

)−1(
Sa − ka −maµSa

)
14We slightly abuse notation here setting Rb to denote that returns are distributed as in group b
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and the counterfactual belief distribution is given by

Ea,b ∼ N

(
µb, σ

4
Rb
mT

a

((
maσ

2
bm

T
a + ΣSa −maΣ

T
Sa,Ra

)−1)T

ma

)

Denote by OVa the identified variance of beliefs for group a

OVa = ΣT
Sa,Ra

Σ−1
Sa
ΣSa,Ra

The following proposition assert that we can identify the variance of the counterfactaul

beliefs distribution

Proposition 4. Let R and signal vector S be jointly Gaussian-distributed, conditional

on the cost c, for members of both group a and b. Then we we can point identify the

counterfactual quantity ∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R|c)p(c)dRdc

Proof. The proof follows from the following derivation:

Var(Ea,b) = σ4
Rb
mT

a

((
ΣSa,Raσ

−2
Ra

σ2
Rb
σ−2
Ra

ΣT
Sa,Ra

+ ΣSa − ΣSa,Raσ
−2
Ra

ΣT
Sa,Ra

)−1
)T

ma

=
σ4
Rb

σ4
Ra

ΣT
Sa,Ra

(
ΣSa,RaΣ

T
Sa,Ra

(
σ2
Rb

σ4
Ra

− 1

σ2
Ra

)
+ ΣSa

)−1)T

ΣSa,Ra

=
σ4
Rb

σ4
Ra

ΣT
Sa,Ra

(
Σ−1

Sa
−

(
σ2
Rb

σ4
Ra

− 1
σ2
Ra

)Σ−1
Sa
ΣSa,RaΣ

T
Sa,Ra

Σ−1
Sa

1 + (
σ2
Rb

σ4
Ra

− 1
σ2
Ra

)ΣT
Sa,Ra

Σ−1
Sa
ΣSa,Ra

)T

ΣSa,Ra

=
σ4
Rb

σ4
Ra

(
OVa −

(
σ2
Rb

σ4
Ra

− 1
σ2
Ra

)OV 2
a

1 + (
σ2
Rb

σ4
Ra

− 1
σ2
Ra

)OVa

)

=
σ4
Rb

σ2
Rb

+
σ2
Ra

(σ2
Ra

−OVa)

OVa
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where in the third row we used the Sherman-Morrison formula and the definition of

OVb.

Remark. Notice that in the normal case, where both the returns distribution and signals

are normally distributed, there is no loss of generality in assuming that high school graduates

receive only a scalar noise of the form

s = R+ ϵ

where ϵ ∼ N (0, σ2
ϵ ). Following the same steps as before, we can show that the observed

variance of beliefs is given by

OV =
σ4
R

σ2
R + σ2

ϵ

which implies that the information structure P (S|R) = N (R, σ2
ϵ ) is identified by

σ2
ϵ =

σ2
R(σ

2
R −OV )

OV

Given the information structure, the counterfactual distribution is simply given by

σ4
a

σ2
a −

σ2
R,b(σ

2
R,b+OVb)

OVb

which aligns with the counterfactual quantity when agents have a richer signal structure.

E.2.3 Identification of the Information Structure Decomposition with Data on

the Full Belief Distribution

In some cases, researchers may hope to elicit information on the probabilities that an agent

put on each outcome realization (Manski (2004), Wiswall and Zafar (2015), Zafar (2011),

Wiswall and Zafar (2021), Diaz-Serrano and Nilsson (2022)). We now turn to show that

this information is sufficient for point identification of our choice gap decomposition, with

respect to the information structure.

We assume that individuals from group b have earnings distribution πb and access to

the information structure (P(S|b,R),S), and for group a have returns distribution πa and
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access to the information structure (P(S|a,R),S). Denote by qs,g ∈ ∆(R) the posterior

beliefs induced by a signal realization s ∈ S and prior πg. We let qs,g(R) be the assigned

density that this posterior puts on state R. Furthermore, we assume that we observe for

each group the joint distribution, ϕ(R, qs), of returns R and the posterior beliefs qs.

We start by noting that within the framework, knowing beliefs allows us to identify a

richer notion of costs. Specifically, denote by Bi =
∫
RRqi(R)dR the measured posterior

mean for individuals with beliefs qi and notice that

P (D = 1|x,B) = E[1[Bi ≥ c(x, ν)]] (25)

where ν is additional cost heterogeneity, not included in our identifying discussion in section

2.5. Under some regularity conditions and the assumption B ⊥⊥ ν|X, we can identify the

distribution of c(x, ν) for each x and B, using variation in B. The identification here relies

on B as a “special regressor” needed for identification, as discussed in (Lewbel (2012)). From

now on we assume we know the joint distribution of P (qi, ci|x), and omit the cost c.

To identify the outcomes distribution, we can use two approaches. The first is simply

be able to observe the realization distribution if possible. The other is to use the measured

beliefs and simply integrate over beliefs, i.e.

πg(R) =

∫
i

qi(R)di (26)

Under the assumption that rational expectations are held, this should provide the initial

prior.

We start by showing the following lemma that shows that for a fixed information struc-

ture, there’s a mapping from the posterior, given prior π′
g to a posterior under a different

prior.

Lemma 3. Let πg and πg′ be two priors with the same support, then for each s, information

structure P (s|α) prior πg and implied posterior qs, the counterfactual posterior with prior

πg′ is given by qs,g′ =
qs(R)
π(R)

πg′ (R)∫
R

qs(R)
π(R)

πg′ (R)dR
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Proof.

qs,g′(R) =
P (s|R)πg′(R)∫

R p(s|R)πg′(R)dR

=

P (s)qs(R)
π(R)

πg′(R)∫
R

P (s)qs(R)
π(R)

πg′(R)dR

=

qs(R)
π(R)

πg′(R)∫
R

qs(R)
π(R)

πg′(R)dR

Lemma 3 demonstrates that the counterfactual posterior can be calculated from the

known posterior πg and the counterfactual distribution πg′ , without requiring explicit knowl-

edge of the information structure. Given the counterfactual posteriors, one can also derive

the counterfactual means and thus identify all components of the decomposition. We proceed

to establish that all parts of the decomposition are identified.

Recall that for our decomposition we needed to identify the distribution of counterfactual

posterior mean, if the returns were drawn according to group b, information according to

group a and updated correctly in this new counterfactual world.

P⟨a,b⟩ =

∫
R
P(Ea,b(s) ≥ 0|R, a), πb(R)dR

Proposition 5. Assume we know ϕa(qs,a,R) and ϕb(qs,a,R) then the conditional distribu-

tion P(Ea,b(s)|R, a) is identified and so is P⟨a,b⟩ in 22

Proof. The proof follows from Lemma 3. Notice that according to Lemma 3, every two

signals that generate the same posterior for group a, also generate the same posteriors in

the counterfactual case where R is distributed according to πb; therefore, it’s enough to

know the posterior without requiring the information structure. Further, using Lemma 3,

we can identify the distribution of the counterfactual posteriors by calculating the implied

distribution of the composition
( qs(R)

π(R) )πg′ (R)∫
R(

qs(R)
π(R) )πg′ (R)dR

. Finally, to obtain P (Ea,b|R), we only need

to map each posterior to its implied mean. As P (Ea,b|R) is identified, P⟨a,b⟩ is trivially

identified, along with the decomposition components values.

97



One implication of Proposition 5 is that in the case where we have binary outcomes

Y ∈ {1, 0} , and we know the joint distribution of ϕ(E[Y |s], Y ), the decomposition is point

identified using simply the conditional mean beliefs.

Corollary 2. If outcomes are binary Y ∈ {1, 0} and we observe the joint ϕ(E[Y |s], Y ), then

P⟨a,b⟩ in 22 is point identified

Proof. Simply follows from proposition 5 and the fact that in the bianry case E[Y |s] is the
posterior distribution.

The case of binary outcomes is prevalent in many applications within the discrimination

literature. For instance, in bail decisions, judges are often modeled as agents attempting

to predict the likelihood of reoffense (e.g., Arnold et al. (2018)), Researchers may wish to

quantify the extent to which disparities in decisions made for Black and White defendants are

driven by the information available to judges or by the underlying distribution of reoffending

rates. The above corollary demonstrates that we can decompose this gap and precisely

identify the role each component plays. Similar arguments can be extended to other contexts,

such as hiring decisions (Bertrand and Mullainathan (2004),Kline et al. (2022)) or treatment

allocation in medical settings (Chan et al. (2022)).

E.3 Nonparametric Partial Identification

Researchers often have data on outcomes and posterior mean beliefs, accessible via the iden-

tification strategy outlined in Section C.2 or through surveys querying individual beliefs.

However, access to this data alone in general does not suffice for the point identification

of the counterfactual beliefs distribution. Building on insights from the empirical infor-

mation robustness literature(Bergemann and Morris (2019, 2013, 2016); Bergemann et al.

(2022) Syrgkanis et al. (2017) Gualdani and Sinha (2019) Magnolfi and Roncoroni (2023))

we demonstrate a methodology to identify the counterfactual distribution of beliefs. Our

proof in this section relies on Bergemann et al. (2022).

Our objective is to describe the identified set of the first and second parameter of interest.

Following the last section, we assume that everything is conditioned on x, z, and subsume

x and z for brevity, and assume to know the joint distribution ϕ(R,E), for both grouaps
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a and b. Throughout the discussion we introduce and omit group membership when it’s

needed. Before we start, we redefine and define some of the notation we would be using

in the discussion. We assume that individuals have access to information structure S, with
support s and density function f(s|R) and the corresponding CDF F (s|R). We denote

by µ ∈ ∆(supp(R)) the prior distribution. The posterior mean beliefs, given information

structure S and prior µ is given by E[R|s;S, µ]. Throughtout most of the discussion we would

fix S, and indicate it only when it matters. We further define the conditional distribution of

beliefs, that are generated for a given prior and information structure, conditioned on R as

P µ
S (E|R) =

∫
s:E[R|s;S,µ]=E

dF (s|R)

Before moving to the main identification argument we show the following two trivial

claims.

Claim 1. Let E(s, µ) be

E(s, µ) = argmin
E

∫
R
(R− E)2

µ(R)f(s|R)∫
R µ(R)f(s|R)dR

dR (27)

then E(s, µ) = E[R|s;µ]

Proof. The results are simply implied by the first order conditions.

Claim 2. Fix two prior distributions, µ, µ′ ∈ ∆(R), where µ is absolute continuous with

respect to µ′ and let E(s) and E ′(s) be

E(s) = argmin
E

∫
R
(R− E)2

µ(R)f(s|R)∫
R µ(R)f(s|R)dR

dR (28)

and

E ′(s) = argmin
E

∫
R

[
(R− E)2

µ(R)

µ′(R)

]
µ′(R)f(s|R)∫

R µ′(R)f(s|R)dR
dR (29)

Let Γ(R, E) be the joint distribution ofR and E(s), where Γ(R, E ;µ) = µ(R)
∫
{s:E(s)=E} dF (s|R),

and let Γ̃(R, E) be the joint distribution ofR and E ′(s), where Γ̃(R, E) = µ′(R)
∫
{s:E ′(s)=E} dF (s|R),
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then

Γ(R, E) = µ(R)

µ′(R)
Γ̃(R, E) (30)

Furthermore,

P µ
S (E|R) =

Γ̃(R, E)
µ′(R)

(31)

Proof. Notice that for each signal realization s ∈ S we have

E ′(s) = argmin
E

∫
R
(R− E)2

µ(R)

µ′(R)

µ′(R)d(s|R)∫
R µ′(R)d(s|R)dR

dR (32)

= argmin
E

∫
R
(R− E)2µ(R)f(s|R)dR (33)

= E(s) (34)

Therefore,
∫
{s:E ′(s)=E} dF (s|R) =

∫
{s:E(s)=E} dF (s|R), for all E, which implies

Γ(R, E) = µ(R)

∫
{s:E(s)=E}

dF (s|R) (35)

= µ(R)

∫
{s:E ′(s)=E}

dF (s|R) (36)

=
µ(R)

µ′(R)
Γ̃(R, E) (37)

Finally, notice that E ′(s) = E(s) = E[R|s;S, µ], therefore we have that

P µ
S (E|R) =

∫
s:E[R|s;S,µ]=E

dF (s|R) =

∫
s:E(s)=E

dF (s|R) =

∫
s:E ′(s)=E

dF (s|R) =
Γ̃(R,E)

µ′(R)

(38)

We can now proceed to the identification argument. We want to describe the identified

set of the information channel. The first component, which is observed share, is clearly

identified, we therefore need only to show that the counterfactual share is identified. Fix

an observed joint distribution of beliefs and states, induced by an unknown information

100



structure S and µ′, ϕ(R, E) = µ′(R)P µ′

S (E|R). We want to characterize the set of possible

joint distributions of beliefs and states for the counterfactual case where we change the state

distribution to µ, but leave the information structure S unchanged. Throught the discussion

we assume that both priors have common support and that ∀Rµ(R) ≫ 0 ⇐⇒ µ′(R) ≫ 0,

such that our counterfactual would be well defined.

Denote by C(ϕ(R,E), µ′) the set of joint distributions, ϕ̃(R,E), that can be induced by

the information structure S, which induces ϕ(R,E), and the returns distribution µ. i.e.

C(ϕ(R,E), µ) =

{
ϕ̃(R,E) ∈ ∆(supp(R), cl(supp(R)))

∣∣∣∣
∃S s.t µ′(R)P µ′

S (E|R) = ϕ(R,E), µ(R)P µ
S (E|R) = ϕ̃(R,E)

}
where cl(supp(R)) is the support of beliefs. Our objective is to find a tractable charac-

terization of this set. Let π(R,Eµ′ ,Eµ) ∈ ∆(R, cl(R), cl(R)) be a joint distribution that

satisfies ∫
Eµ

π(R,E,Eµ)dEµ = ϕ(R,E) (39)

∀Eµ′ ,Eµ Eµ′ = argmin
E

∫
R
(R− E)2π(R,Eµ′ ,Eµ)dR (40)

∀Eµ′ ,Eµ Eµ = argmin
E

∫
R
(R− E)2

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dR (41)

and denote the set of implied joint distribution of R and Eµ as

M(ϕ(R,E), µ) =

{
ϕ̃(R,E) ∈ ∆(supp(R), cl(supp(R)))

∣∣∣∣
ϕ̃(R,E) =

∫
Eµ′

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dEµ′ , π satisfies (39), (40), (41)

}

Claim 3. For any observed distribution ϕ(R,E) ∈ ∆(supp(R), cl(supp(R))) and µ ∈
∆(supp(R)) that is absolute continuous with respect to µ′, we have

C(ϕ(R,E), µ) = M(ϕ(R,E), µ) (42)
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Proof. We start by showing thatM(ϕ(R,E), µ) ⊆ C(ϕ(R,E), µ). Let ϕ̃(R,E) ∈ M(ϕ(R,E), µ)

and let π(R,Eµ′ ,Eµ) be the corresponding joint distribution that satisfies (39),(40),(41).

Then define the the information structure SEµ′ ,Eµ as

P (Eµ′ ,Eµ|R) =
π(R,Eµ′ ,Eµ)∫

π(R,Eµ′ ,Eµ)d(Eµ′ ,Eµ′)
=

π(R,Eµ′ ,Eµ)

µ′(R)
(43)

where the denominator follows from condition (39). Notice that as π satisfies condition (40),

claim 1 and claim 2 implies

P µ′

SEµ′ ,Eµ
(E|R) =

∫
Eµ

P (E,Eµ|R)dEµ (44)

hence, using constraint (39), we have

µ′(R)P µ′

SEµ′ ,Eµ
(E|R) = µ′(R)

∫
Eµ

P (E,Eµ|R)dEµ = ϕ(R,E) (45)

Next, notice by constraint (41) and claim 2 we know that

∫
Eµ′

π(R,Eµ′ ,Eµ)dEµ′

µ′(R)
= P µ

SEµ′ ,Eµ
(E|R),

then

ϕ̃(R,E) =

∫
Eµ′

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dEµ′ = µ(R)P µ

SEµ′ ,Eµ
(E|R) (46)

therefore, we showed that there exist an information structure as needed, which implies

ϕ̃(R,E) ∈ C(ϕ(R,E), µ)

To see the reverse inclusion, C(ϕ(R,E), µ) ⊆ M(ϕ(R,E), µ). Fix ϕ̃(R,E) ∈ C(ϕ(R,E), µ)

and let S be the information structure that satisfies

µ′(R)P µ′

S (E|R) = ϕ(R,E) (47)

µ(R)P µ
S (E|R) = ϕ̃(R,E) (48)
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Define the functions Eµ : S → cl(Supp(R)),E′
µ : S → cl(Supp(R)) as

Eµ′(s) = argmin
E

∫
R
(R− E)2µ′(R)f(s|R)dR (49)

Eµ(s) = argmin
E

∫
R
(R− E)2

µ(R)

µ′(R)
µ′(R)f(s|R)dR (50)

and define the joint probability π(R,Eµ′ ,Eµ) as

π(R,Eµ′ ,Eµ) = µ′(R)

∫
s:Eµ′ (s)=Eµ′ ,Eµ(s)=Eµ

dF (s|R) (51)

Next, using claim 2 we know that E′
µ(s) = E[R|s;S, µ′] and therefore∫

Eµ

π(R,E,Eµ)dEµ = µ′(R)

∫
Eµ

π(E,Eµ|R)dEµ = µ′(R)π(E|R) = µ′(R)P µ′

S (E|R) = ϕ(R,E)

(52)

To see that π satisfies condition (40), we can use the law of iterated expectations

∀Eµ′ ,Eµ argmin
E

∫
R
(R− E)2π(R,Eµ′ ,Eµ)dR (53)

= argmin
E

∫
R
(R− E)2

∫
s

π(R,Eµ′ ,Eµ, s)dsdR (54)

= argmin
E

∫
s:Eµ′ (s)=Eµ′ ,Eµ(s)=Eµ

∫
R
(R− E)2π(R,Eµ′ ,Eµ, s) (55)

= Eµ′ (56)

where we used the fact that E′
µ minimizes the expression by construction. A similar argument

shows that (41) also holds. Finally, by claim 2, condition (41), and the way π is constructed,

we have that ∫
Eµ′

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dEµ′ = µ(R)P µ

S (E|R) = ϕ̃(R,E) (57)

which implies that ϕ̃(R,E) ∈ M(ϕ(R,E), µ)
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To conclude the identification argument, we introduce the following assumption:

Assumption 5. µa is absolutely continuous with respect to µb.

We fix cost c, and denote the set of the possible probabilities

P⟨a,b⟩(c) = P(Ea,b ≥ c|R, c, a)πb(R|c) (58)

as

I(ϕa(R,E)) =

{
p ∈ [0, 1]

∣∣∣∣p =

∫
R

∫
E≥c

ϕ̃(R,E)dEdR

s.t ϕ̃(R,E) ∈ C(ϕa(R,E), µb(R))

}
The following claim shows an easy characterization of this set

Claim 4. The identified set is given by

I(ϕa(R,E)) =

{
p ∈ [0, 1]

∣∣∣∣p =

∫
R

∫
E≥c

ϕ̃(R,E)dEdR

s.t = ϕ̃(R,E) ∈ M(ϕ(R,Eηa), µb(R))

}
Proof. Follows from claim 3 and assumption 5.

Proposition 6. The quantity in 22 is partially identified given the distribution of ϕ(R, c,E)

Proof. follows trivially from claim 4.

Notice that we can further simplify the characterization of the identified set by using the

fact that constraint (40) and (41) are satisfied if and only if the first order conditions hold.

Therefore, we can rewrite the constraints (40) and (41) as

∀Eµ′ ,Eµ Eµ′ =

∫
R
(R− E)π(R,Eµ′ ,Eµ)dR (40a)

∀Eµ′ ,Eµ Eµ =

∫
R
(R− E)

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dR (41a)
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Now, as the constraints (39), (40a) and (41a) are linear, the identified set is convex, and

we can define it as an interval bounded between [p, p], such that

p, p = min
π

,max
π

∫
z

ha(z)

∫
R

∫
Ea

∫
Eb≥c(z)

π(R,Ea,Eb)
µb(R)

µa(R)
d(R,Ea,Eb, z) (59)

s.t

∀E,R ϕ(R,E) =

∫
π(R,E,Eb)dEb (60)

∀Ea,Eb Ea =

∫
(R− Ea)π(R,Ea,Eb)dR (61)

∀Ea,Eb Eb =

∫
(R− Eb)

µb(R)

µa(R)
π(R,Ea,Eb)dR (62)

F The Texas Higher Education Opportunity Project

(THEOP)

The Texas Higher Education Opportunity Project (THEOP) is a comprehensive study de-

signed to evaluate college planning and enrollment patterns in the context of Texas’s policy

granting automatic admission to public colleges and universities for students graduating in

the top decile of their high school class. Collecting data from nine diverse Texas colleges

and universities, including both public and private institutions, THEOP encompasses ad-

ministrative records on applications, admissions, and enrollments, alongside a longitudinal

survey of students from two cohorts in 2002. The administrative data set includes Col-

lege Application Data, tracking demographics, academic profiles, and admission outcomes

from before and after the 1998 implementation of the top 10% law, and College Transcript

Data, detailing academic performance and progress of enrolled students. Efforts to ensure

data quality and confidentiality have been meticulously undertaken, involving the removal

of personal identifiers and the adjustment of data to prevent identification, thus ensuring a

high level of privacy and data integrity. For our purpose we use questions asked about the

interaction between high school students and their school councilor.
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