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Motivation

» The goal of this project is to measure the lifetime uncertainty costs across
different social groups in India

» Uncertainty over the future can generate large differences in welfare and can
aggregate to large differences in other aggregate variables such as wealth and
income

» This is not the first project that aims at capturing uncertainty
» Cunha and Heckman (circa 2005)

» Arellano et al. (2022)
» Blundell et al. (2008)

» Lucas (1987), Barlevy (2004), Alvarez (2004)
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Overview

> In this project, | measure individuals’ willingness to pay for resolving all future
uncertainty/The value of ex-ante information

» The cost of uncertainty is a function of two components

» The information structure
» The utility/loss function and the associated actions

> As these are the two main components that affect uncertainty costs, | want to
make as few as possible assumptions on their structure
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Overview

> Model

» Uncertainty measure
» Data

» Issues with the data

» Estimation using generative models (Athey et al. (2020); Kaji et al. (2022))
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Model

Let Q = {{ye}d, {Re}d, {V:}{ } be the state space and let n = {n}{ be a
sequence of signals drawn each period from P(n|w)

We assume that at period t = —1 agents have common prior over sequences
m(Q2)
Agents have rational expectations but may have more information than what is

available to the researcher

Agents have the same utility function (may vary with observables).
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Model

» Each period 7 the DM solves

maxE[ZB (Ce, Vi)|s

]

subject to the budget constraint
CG+A <A 1R+ vt

where C; is consumption, V; are taste shifters, A; are assets and R; are the
returns on assets

6/42



Parameter of interest

> Lets® = ({ye}/, {Re}] . {Vi}{ {n:}{)and
St = ({yt}(ga {Rf}sv {Vt}év {nt}{)v Af—l)

> Let
Wuncertainty (Sr) = a C st), Vi(st))|sr
Uncertsiney () (G AT Clse)¥su s [ZB e(s0). Vilse))l ]
C(St) = {Ct(st)aAt(st) G+ A< At—lRt—l(St) +)/t(5t)}
and
Wei(sr) =E max (Ce, Vi)|sr
crls:) [{ct( S} {A(s1)H ec(st) Zﬁ o Vel }

C(s') = {{Ct}f, (A} vt e {t, . T}, C+ A < Ai_1Ri_1(sY) —i—yt(st)}
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Parameter of interest

» The normalized cost of uncertainty, given realization s;, is

H(s,) = Wei(sr) — WUncertainty(ST)
" uc(C-, V)

» This measure captures in dollars how much agents are willing to pay in order to
resolve all uncertainty

» Usually it’s the case we can't observe s;, but we observe part of the
information set X;

» Therefore, we can identify and estimate E[H(s;)|X¢], due to the law of iterated
expectations, the time separability of the utility function and rational
expectations assumption
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Alternative Measures - Group level

» Current Compensation Compensation - Find C such that
Hcompensation(ST) = WCI(ST) - (WUncertainty(sT) - U(C’7'7 VT)) + U(C7 VT) =0

» Captures the amount of current period consumption we need to make the
agent indifferent

> Issues:
» Sensitive to the current utility function

» Not clear what to do if we allow for different consumption types

» We then calculate E[C|x] for each X of interest

9742



Alternative Measures - Group Level
> Let WK (s;) be the value of complete information and asset level K

» Cost Measure - § such that
S:)—¢
HCost(S‘r) = W?/O( ) (S‘r) - WUncertainty(ST) =0

» Captures the amount of current period assets we can take from the agent to
make her indifferene

> Issues:
» |n practice we solve for ¢ that satisfies

E[W?IO_(S(ST) - WUncertainty(Sq-)|A0, X] = 0
which gives us the average cost for the observed group

» Hard to compute

We then calculate E[§|x] for each X of interest
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Data - CPHS

> We use the Center for Monitoring Indian Economy’s Consumer Pyramids
Household Survey (CPHS)

» This is the largest Household (HH) survey in the world, covering around 200K
HH across India

» The survey assures that every HH is interviewed every four-month on their
income sources, expenditure, work and employment, material status, and
demographics.

» The period covered is 2014-2022; in my setup, | restrict attention to
2015-2019 (60 months)

» Today, | am using a smaller sample of HH that answered consistently for the 60
months
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Identification

» Identification of the target parameter requires
» |dentification of the flow utility functions

» Follows from nonparametric identification of the Euler equation (Escanciano et al.
(2021))

> Identification of the joint distribution 7({Y:}, {Re}, {Ce}, { Vi }, Ao)
» In theory, straightforward, in practice data limitations requires making additional
assumptions
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Identification of the Marginal Utility - Intuition

> Assume we observe the joint distribution of 7{{C;}J, {R:}d, {V:}{ }

» Identification of the flow utility function builds on the Euler equation and the
results in Escanciano et al. (2020) (up to multiplicative and additive constants)
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Identification of the Marginal Utility - Intuition

» Lletg=(C,V)and ¢’ = (C', V')
» As we assumed that the preferences are time separable, the Euler equation

implies
uc(q) = BE[uc(q)R' | q]

» We can rewrite the equation as
uc(q) = ﬁ/ uc(q')y(q, q")dd’
q

where ¥(q,q') = E[R' | q,9']p(d' | q)
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Identification of the Marginal Utility - Intuition

» To see the intuition behind the identification result of Escanciano et al. (2020),

consider the finite case in which g € {q1, ..qk }. Then the Euler equation is

written as
K

uc(qi) = B uc(qj)va(gi, qj) =0

1
where 14(q;, q;) is the discrete analogue of 1)

» Rewriting in Matrix form
(I-pV)U:.=0

» The system of linear equation has a nontrivial solution with U, >> 0 if % is the
Eigenvalue of W. Therefore U. is the Eigenvalue associated with 5 € (0, 1)

» In general, in the discrete case, there could be multiple values of g € (0, 1).
Therefore the discrete system is partially identified
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Identification Intuition

» In the continuous case, we can define the linear operator A as
(Auc)(q B/ uc(q q)dqd
» The Euler Equation implies that
uc = BAuc

» Escanciano et al. (2020) shows that if u. >> 0 and Au, >> Oand Aisa
compact operator, then a solution for u. exists if 3 = p(A), where p(A) is the

largest real eigenvalue of the operator A.

» Escanciano et al. (2020) shows that there is a unique value for 3 and u. that
satisfy the Euler equation
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Identification of the Joint 7(Y, C, R, A)

» There are two (three?) main challenges in identifying the lifetime consumption
distribution from the CPHS data.

» The data covers only four years
» Introduce a Markov assumption

» The data does not contain information on assets and returns
» Estimating individuals’ assets from consumption and income
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Problem: Short Panel. Solution: "Learnability”/Markov Assumption

> It is known that we can decompose any joint distribution as

(Y ACH ARY) = [[#(Y7, Cr, R 1{Y} L ACH AR Y).m(Yo, Go, Ro)

» Unfortunately, we cannot observe each individual's entire life sequence of shocks. Therefore we
introduce the following assumptions
> Al: stationarity m,({Y:}{_o: {Re}i—0, {Ce }i—os { Vi }_os Ao) =

» A2: Learnablity/M-Markov Process: There is a (known) M such that for all t > m

we
7(Ye, G | Yeot, G—1, Vi1, .., Yo, Go, Vo) =

7T( Yty G | Yt—17 Ct—la Vt—la ey yt—M7 Ct—M, Vt—M)

» Under this assumption, we can estimate the conditional distribution and stitch them together to
identify the uncertainty cost
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Problem: Short Panel. Solution: "Learnability”/Markov Assumption
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Figure: Consumption - T-Values
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Problem: Short Panel. Solution: "Learnability”/Markov Assumption
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Figure: Income - T-Values
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Problem: Initial Wealth is not observed. Solution: Estimate it

> We do not observe in the data information on the HH assets

» We do observe information on income from interest (and other similar sources)

» As wealth is usually poorly measured, some literature tried to estimate
individuals’ wealth from Tax data on non-labor income. (Smith, Zidar and Zwick

(2022), Saez and Zucman, (2016), Piketty, Saez and Zucman, (2018))

> | suggest using consumption, labor income, and not-labor income to estimate
each HH wealth
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Problem: Initial Wealth is not observed. Solution: Estimate it

» We impose the following assumption:
A3 (Constant Interest Rate): R, = RVt

» Let /;;1 be the realized returns at period ¢t 4+ 1 and Notice that
lev1 = re(Ar + ye — ¢t)
and using the B.C we can derive the following
It+1 = I’(/41_L +yt — Ct) —
t t—1
ley1 = r(Ao + Z(Y‘r —¢)+ Z I-)
=1

=1
t

t—1
ley1=rx Ag+r X (Z(yT—cT)—i—ZIT)
T=1

=1

» We can then estimate R and A for each HH using a Fixed Effects regression.
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Results - Wealth Distribution

> R = 0.0051585(0.0003419), which implies R, ~ 6.3% yearly returns (India 10
years bonds is 6%-7.5%)

» Estimated Wealth Distribution, CPHS (1000 rupees)

(1) ) 3) @) (5) (6) (7) (8) 9 (100 (11 (120 (13
mean sd min max pl p5 p10 p25 p50 p75 p90 p95 p99

5773 1,611 -3,217 76,276 -451.9 -1642 -88.58 -23.50 -0.363 3347 2,099 3,542 7,412

> NSS AIDIS Wealth Distribution (2013) (1000 rupees)

(1 2 3) 4 5 () ® 9 @10 11 (12 (13)
mean sd min max pl p5 pl0 p25 p50 p75 p90 p95 p99

1,631 11,277 -84,960 1.850e+06 -117.7 O 2550 157.3 500 1,384 3,397 5840 16,468

25/42



Estimation of large scale conditional distribution

» We want to be as flexible as we can when estimating the joint distribution

> | suggest using Normalized Flow as a way to estimate the conditional
distribution.

» There are three main advantages to this method
» Allows for fast sampling from the estimated distribution

» Allows to estimate conditional densities easily

» We can easily get the density function
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Normalized Flows - the idea in a nutshell
» Let x ~ p(x) and u ~ p,(u).

» The idea behind Normalized Flows is to express x by a differentiable and
invertible transformation of u ~ p,(u)

x = T(u),u~ py(u)

» Using this transformation and the change in variables formula, we can express
the density of x as

px(x) = pu( T~ (x))|detS-1(x)[~*
» where T~ !is the inverse of T and J7 is the Jacobian of T

» For continuous variables, and u ~ U(0, 1), we know that T exists, as we can
use the CDFs on the marginals. For other distributions, we can use an
additional transformation of the CDF
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Normalized Flows - KL Motivation

» | parameterize T(x)g1 by 6, and maximizes the implied log-likelihood

» Similar to ML, this would minimize the KL distance

L(0) = Dke(p("x)l|ps(x))
= C = Exup(lpo(x)]
= C — Exop(lpu(Ty * (x)) + log|detd 1 (x)]]

» Finally, given the transformation T (u) | can generate samples from py(x) by
drawing from u and inverting T.
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Parameterization if 71

» In practice, for each variable for which | estimate the conditional density, |
parameterize T as

(Zd’ X hxr W) Flax_) + Br_.

» where each parameter (ux__,o0x__,ax__,Bx_.,wx—-) is a neural network (X size
res blocks) and f : R — R.. (Similar to Flow++,2019)
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Estimation Demonstration
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Figure: Income Simulation
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Estimation Demonstration
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Figure: Consumption Simulation
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Estimation Demonstration
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Estimation Demonstration
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Estimation Demonstration
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Estimation Demonstration
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Estimation Demonstration
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Estimation Demonstration
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Estimation Demonstration
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Uncertainty Values
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Figure: Cost of uncertainty over the life cycle (In months)
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Conclusion

» Utilizing a common utility function across castes, initial findings indicate
persistent disparities in the cost of uncertainty.

» These disparities are life-cycle persistent, enduring until age 70.

> In terms of utility, these costs are small, approximate 0.5%, aligning with Lucas
(1987).

» The next phase will quantify the proportion of uncertainty disparities
attributable to caste-specific preferences.
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thx.
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Losses

In sample loss

Out of sample loss
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